Surface-Bound nanoStructureS: Mechanical and Metrological StudieS

نویسندگان

  • Kyumin LEE
  • Kyumin Lee
  • Jisun Park
چکیده

This thesis looks at surface-bound nanowires and nanoparticles, the mechanical and the metrological properties of which are of practical importance in the realization of nanometer-scale electronics. Atomic force microscope (AFM) was the main instrument of research. By bending suspended carbon nanotube structures with the AFM, the Young’s modulus of carbon nanotubes has been measured. An efficient new technique that involves an ac-dielectrophoresis preparation of carbon nanotubes on v-groove GaAs substrates and a force-curve measurement of the stiffness has been devised. The Young’s modulus of a batch of multiwall carbon nanotubes grown by a single chemical vapor deposition (CVD) process shows a strong diameter dependence, indicating that the small catalyst particles produce crystalline tubes, while the thicker particles produce low-quality tubes with an abundance of structural defects. The experimental result is a strong evidence for the metastable-catalyst growth model of carbon nanotubes in CVD—the growth kinetics of carbon nanotubes is determined by the catalyst’s liquid skin, which is more stable for smaller catalysts. As the nanotube study highlighted the importance of the size of catalyst nanoparticles, the topic of accurate nanoparticle sizing by dynamic AFM was then investigated. The measured size of a surface-bound nanoparticle was found to vary with imaging parameters, and a theoretical modeling showed that the non-contact—intermittentcontact mode switching can lead to discrepancies. Experimental results confirmed that the mode switching indeed causes the largest error in size measurements. A discrepancy also exists between the all-non-contact-mode and all-intermittent-contact-mode cases, and this anomaly could be explained by the effects of particle–substrate deformation and capillary forces. Nanoparticles were prepared on surfaces by boiling colloid drops on hot surfaces, a new technique developed for the uniformly dispersed deposition of colloidal nanoparticles and nanowires. Our experiments suggest that the actual deposition occurs through the smooth dewetting of liquid microdrops at elevated temperatures. The method is applicable on a wide range of surfaces and materials. Finally, a general haptic interface for the AFM was realized. The interface can be implemented on different AFM models with little effort, and it supports both the contactand dynamic-AFM operations. Manipulation of gold nanoparticles has been carried out by raster scanning at different dynamic AFM setpoints, a promising approach for

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites

Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...

متن کامل

Investigation of structural, morphological and dynamic mechanical properties of unvulcanized PDMS/silica compound

In this study, the interaction between the silica filler and polydimethylsiloxanes (PDMS) was investigated from the aspects of the bound rubber and morphological characterization. With special attention to the dynamic properties, the dynamic test was conducted by dynamic shear rheometer. The results show that the modified fillers disperse uniformly within PDMS matrix without aggregation and con...

متن کامل

Mechanical Characterization and Electrochemical Sensor Applications of Zinc Oxide Nanostructures

Nanotechnology is emerging to be one of the most important scientific disciplines that physics, chemistry and biology truly overlap with each other. Over the last two decades science and technology have witnessed tremendous improvement in the hope of unveiling the true secrets of the nature in molecular or atomic level. Today, the regime of nanometer is truly reached. ZnO is a promising materia...

متن کامل

Quantum Theoretical studies of Nanostructures onto Hydrogen Adsorption on V-surface

We have studied the adsorption processes of H2 on the V (100) surface of Vanadium using self consistent field theory.Dissociative adsorptions of H2 are significantly favored compared to molecular adsorptions. There is a significant charge transfer from the first layer of the vanadium surface to the Hydrogen atoms. Three possible adsorption sites, top, bridge and center site, were considered in ...

متن کامل

Atomistic dynamics of interfacial processes: films, junctions and nanostructures

Studies of atomistic mechanisms, energetics and dynamics of surface and interfacial processes using computer-based molecular dynamics simulations employing realistic interaction potentials, open new avenues in investigations of basic and technological problems. Recent results of such studies are discussed for. surface processing via laser irradiation, superheating, melting, and annealing; stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008