Multiplex automated primer extension analysis: simultaneous genotyping of several polymorphisms.
نویسندگان
چکیده
Accurate and fast genotyping of single nucleotide polymorphisms (SNPs) is of significant scientific importance for linkage and association studies. We report here an automated fluorescent method we call multiplex automated primer extension analysis (MAPA) that can accurately genotype multiple known SNPs simultaneously. This is achieved by substantially improving a commercially available protocol (SNaPshot). This protocol relies on the extension of a primer that ends one nucleotide 5'of a given SNP with fluorescent dideoxy-NTPs (minisequencing), followed by analysis on an ABI PRisMS 377 Semi-Automated DNA Sequencer Our modification works by multiplexing the initial reaction that produces the DNA template for primer extension and/or multiplexing several primers (corresponding to several SNPs) in the same primer extension reaction. Then, we run each multiplexed reaction on a single gel lane. We demonstrate that MAPA can be used to genotype up to four SNPs simultaneously, even in compound heterozygote samples, with complete accuracy (based on concordance with sequencing results). We also show that primer design, unlike the DNA template purification method, can significantly affect genotyping accuracy, and we suggest useful guidelines for quick optimization.
منابع مشابه
Competitive enzymatic reaction to control allele-specific extensions
Here, we present a novel method for SNP genotyping based on protease-mediated allele-specific primer extension (PrASE), where the two allele-specific extension primers only differ in their 3'-positions. As reported previously [Ahmadian,A., Gharizadeh,B., O'Meara,D., Odeberg,J. and Lundeberg,J. (2001), Nucleic Acids Res., 29, e121], the kinetics of perfectly matched primer extension is faster th...
متن کاملAnalytical validation of the tag-it high-throughput microsphere-based universal array genotyping platform: application to the multiplex detection of a panel of thrombophilia-associated single-nucleotide polymorphisms.
BACKGROUND We have developed a novel, microsphere-based universal array platform referred to as the Tag-It platform. This platform is suitable for high-throughput clinical genotyping applications and was used for multiplex analysis of a panel of thrombophilia-associated single-nucleotide polymorphisms (SNPs). METHODS Genomic DNA from 132 patients was amplified by multiplex PCR using 6 primer ...
متن کاملSimultaneous detection of multiple point mutations using fluorescence-coupled competitive primer extension.
We report the development of a method for the simultaneous genotyping of several distinct nucleotide positions by means of fluorescence-coupled competitive primer extension. We demonstrate the application of this method for the simultaneous detection of three point mutations in the human mitochondrial genome, at nucleotide positions 3460, 11778 and 14484, which account for about 90% of cases wi...
متن کاملMALDI-TOF mass spectrometry for multiplex genotyping of CYP2B6 single-nucleotide polymorphisms.
BACKGROUND CYP2B6 is a highly variable and polymorphic cytochrome P450 (CYP) enzyme involved in the biotransformation of an increasing number of drugs, including cyclophosphamide, bupropion, and the nonnucleosidic reverse transcriptase inhibitor efavirenz. Several nonsynonymous and promoter single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene are associated with altered hepatic expression ...
متن کاملDevelopment of a single tube 640-plex genotyping method for detection of nucleic acid variations on microarrays
Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 31 6 شماره
صفحات -
تاریخ انتشار 2001