The Norm Dependence of Singular Vectors

نویسنده

  • ZHIMING KUANG
چکیده

For a linearized system such as ]c/]t 5 Mc, singular vector analysis can be used to find patterns that give the largest or smallest ratios between the sizes of Mc and c. Such analyses have applications to a wide range of atmosphere–ocean problems. The resulting singular vectors, however, depend on the norm used to measure the sizes of Mc and c, as noted in various applications. This causes complications because the choices of norm are generally nonunique. Based on perturbation theory, a derivation of how singular vectors change with norms typically used in the atmosphere–ocean literature is provided, and it is shown that the norm dependences observed in previous studies can be understood as general properties of singular vectors. This will hopefully clarify the interpretation of these observed norm dependencies, and provide guidance to new studies on how singular vectors would vary for different norms. It is further argued, based on these results, that there may not be as much normrelated ambiguity in problems, such as designing targeted observations or ensemble forecasts, as is often assigned to them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the Distributions of Singular Quadratic Expressions and their Ratios

Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

Compressive spectral embedding: sidestepping the SVD

Spectral embedding based on the Singular Value Decomposition (SVD) is a widely used “preprocessing” step in many learning tasks, typically leading to dimensionality reduction by projecting onto a number of dominant singular vectors and rescaling the coordinate axes (by a predefined function of the singular value). However, the number of such vectors required to capture problem structure grows w...

متن کامل

A new method to determine a well-dispersed subsets of non-dominated vectors for MOMILP ‎problem

Multi-objective optimization is the simultaneous consideration of two or more objective functions that are completely or partially inconflict with each other. The optimality of such optimizations is largely defined through the Pareto optimality. Multiple objective integer linear programs (MOILP) are special cases of multiple criteria decision making problems. Numerous algorithms have been desig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003