Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.

نویسندگان

  • Nathan C Rockwell
  • Shelley S Martin
  • Kateryna Feoktistova
  • J Clark Lagarias
چکیده

Phytochromes are well-known as photoactive red- and near IR-absorbing chromoproteins with cysteine-linked linear tetrapyrrole (bilin) prosthetic groups. Phytochrome photoswitching regulates adaptive responses to light in both photosynthetic and nonphotosynthetic organisms. Exclusively found in cyanobacteria, the related cyanobacteriochrome (CBCR) sensors extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Blue/green light sensing by a well-studied subfamily of CBCRs proceeds via a photolabile thioether linkage to a second cysteine fully conserved in this subfamily. In the present study, we show that dual-cysteine photosensors have repeatedly evolved in cyanobacteria via insertion of a second cysteine at different positions within the bilin-binding GAF domain (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) shared by CBCRs and phytochromes. Such sensors exhibit a diverse range of photocycles, yet all share ground-state absorbance of near-UV to blue light and a common mechanism of light perception: reversible photoisomerization of the bilin 15,16 double bond. Using site-directed mutagenesis, chemical modification and spectroscopy to characterize novel dual-cysteine photosensors from the cyanobacterium Nostoc punctiforme ATCC 29133, we establish that this spectral diversity can be tuned by varying the light-dependent stability of the second thioether linkage. We also show that such behavior can be engineered into the conventional phytochrome Cph1 from Synechocystis sp. PCC6803. Dual-cysteine photosensors thus allow the phytochrome superfamily in cyanobacteria to sense the full solar spectrum at the earth surface from near infrared to near ultraviolet.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle.

Cyanobacteriochromes (CBCRs) are cyanobacterial members of the phytochrome superfamily of photosensors. Like phytochromes, CBCRs convert between two photostates by photoisomerization of a covalently bound linear tetrapyrrole (bilin) chromophore. Although phytochromes are red/far-red sensors, CBCRs exhibit diverse photocycles spanning the visible spectrum and the near-UV (330-680 nm). Two CBCR s...

متن کامل

Cyanobacteriochromes in full color and three dimensions.

S ensory photoreceptors occur in all kingdoms of life, eliciting diverse organismal adaptations in response to incident light. The recently identified cyanobacteriochromes (CBCRs) mediate photochromatic and phototactic responses in cyanobacteria (1–3). Great strides toward a molecular understanding of photoreception and signal transduction in this spectrally diverse and exciting photoreceptor f...

متن کامل

Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes

Bacterial photoreceptors absorb light energy and transform it into intracellular signals that regulate metabolism. Bacterial phytochrome photoreceptors (BphPs), some cyanobacteriochromes (CBCRs) and allophycocyanins (APCs) possess the near-infrared (NIR) absorbance spectra that make them promising molecular templates to design NIR fluorescent proteins (FPs) and biosensors for studies in mammali...

متن کامل

The Fast-Evolving phy-2 Gene Modulates Sexual Development in Response to Light in the Model Fungus Neurospora crassa

UNLABELLED Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide expe...

متن کامل

Effect of Cysteine on Transforming Growth Factor β1 as the Main Cause of Renal Disorder in a Rat Model of Diabetic Nephropathy

​Background and purpose: Glycation products, oxidative stress, and inflammation contribute to the development of diabetic nephropathy (DN) due to the elevation of transforming growth factor-β1 (TGF-β1). This study aimed at investigating the effect of Cysteine (Cys) on TGF-β in DN rat model. Materials and methods: In this experimental study, 40 male Wistar rats were randomly divided into four g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 29  شماره 

صفحات  -

تاریخ انتشار 2011