Composite Anodes with Silicon and Engineered Graphene for Advanced Li-ion Battery

نویسندگان

  • Cary M Hayner
  • Harold H. Kung
چکیده

Introduction Rechargeable batteries with improved energy and power density have many potential, high impact applications including advanced portable electronics and electric vehicles. However, most ‘next-generation’ materials capable of providing improved performance suffer from rapid capacity degradation and severe loss of capacity when rapidly discharged. Architectural design that could successfully improve the cycling stability and maintain storage capacity at high rates would make these materials much more commercially attractive. Graphene, a unique twodimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of conventional electrical energy storage devices. Therefore, we have been exploring graphene-based architectures, allowing us to exploit graphene’s unique combination of high surface area, high inplane electrical conductivity, excellent tensile modulus and mechanical durability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes.

Submicrometer-sized capsules made of Si nanoparticles wrapped by crumpled graphene shells were made by a rapid, one-step capillary-driven assembly route in aerosol droplets. Aqueous dispersion of micrometer-sized graphene oxide (GO) sheets and Si nanoparticles were nebulized to form aerosol droplets, which were passed through a preheated tube furnace. Evaporation-induced capillary force wrapped...

متن کامل

Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carb...

متن کامل

High rate and durable, binder free anode based on silicon loaded MoO3 nanoplatelets

In order to make fast-charging batteries a reality for electric vehicles, durable, more energy dense and high-current density resistant anodes need to be developed. With such purpose, a low lithiation potential of 0.2 V vs. Li/Li(+) for MoO3 nanoplatelet arrays is reported here for anodes in a lithium ion battery. The composite material here presented affords elevated charge capacity while at t...

متن کامل

One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materia...

متن کامل

Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries

The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013