Visual and Textual Sentiment Analysis of a Microblog Using Deep Convolutional Neural Networks
نویسندگان
چکیده
Sentiment analysis of online social media has attracted significant interest recently. Many studies have been performed, but most existing methods focus on either only textual content or only visual content. In this paper, we utilize deep learning models in a convolutional neural network (CNN) to analyze the sentiment in Chinese microblogs from both textual and visual content. We first train a CNN on top of pre-trained word vectors for textual sentiment analysis and employ a deep convolutional neural network (DNN) with generalized dropout for visual sentiment analysis. We then evaluate our sentiment prediction framework on a dataset collected from a famous Chinese social media network (Sina Weibo) that includes text and related images and demonstrate state-of-the-art results on this Chinese sentiment analysis benchmark.
منابع مشابه
Efficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملVisual Sentiment Prediction with Deep Convolutional Neural Networks
Images have become one of the most popular types of media through which users convey their emotions within online social networks. Although vast amount of research is devoted to sentiment analysis of textual data, there has been very limited work that focuses on analyzing sentiment of image data. In this work, we propose a novel visual sentiment prediction framework that performs image understa...
متن کاملVisual Sentiment Analysis with Network in Network
In modern society, visual content like images and videos is increasingly becoming a new form of media to express users’ opinions on the Internet. As a complement to textual sentiment analysis, visual sentiment analysis intends to provide more robust information for data analytics by extracting emotion and sentiment toward topics and events from images and videos. Inspired by recent works that a...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملRobust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks
Sentiment analysis of online user generated content is important for many social media analytics tasks. Researchers have largely relied on textual sentiment analysis to develop systems to predict political elections, measure economic indicators, and so on. Recently, social media users are increasingly using images and videos to express their opinions and share their experiences. Sentiment analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithms
دوره 9 شماره
صفحات -
تاریخ انتشار 2016