2-Aminoethoxydiphenyl borate activates the mechanically gated human KCNK channels KCNK 2 (TREK-1), KCNK 4 (TRAAK), and KCNK 10 (TREK-2)

نویسندگان

  • Leopoldo Beltrán
  • Madeline Beltrán
  • Ainhara Aguado
  • Günter Gisselmann
  • Hanns Hatt
چکیده

Two-pore domain K(+) (KCNK, K2P) channels underlie the "leak" (background) potassium conductance in many types of excitable cells. They oppose membrane depolarization and cell excitability. These channels have been reported to be modulated by several physical and chemical stimuli. The compound 2-aminoethoxydiphenyl borate (2-APB) was originally described as an inhibitor of IP3-induced Ca(2+) release but has been shown to act as either a blocker or an activator for several ion channels. Here, we report the effects of this compound on members of the TREK (TWIK related K(+) channels) subfamily of human KCNK channels. We injected Xenopus laevis oocytes with cRNAs (complementary RNAs) encoding several KCNK channels and measured their response using the two-electrode voltage clamp technique. 2-APB was found to be an effective activator for all members of the TREK subfamily (hKCNK2, hKCNK4, and hKCNK10), with the highest efficacy in hKCNK10. We also found that 2-APB was able to activate these channels in cell-excised patches of HEK293 (human embryonic kidney 293) cell transfected with hKCNK4 or hKCNK10, demonstrating direct activation. TREK channels are widely expressed in the central nervous system and peripheral tissues, where they play roles in several key processes. However, little is known regarding their pharmacology; therefore, the identification of a common, stable and inexpensive agonist should aid further investigations of these channels. Additionally, 2-APB has been used to study native receptors in cell systems that endogenously express members of the TREK subfamily (e.g., rat dorsal root ganglia); our results thus warn against the use of 2-APB at high concentrations in these systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Pungent and Tingling Compounds from Piper nigrum L. on Background K+ Currents

Black peppercorns (Piper nigrum L.) elicit a pungent and tingling oral impression. Their pungency is partially explained by the agonist activity of some of their active principles, especially piperine, on TRP channels. However, we recently showed that piperine, as well as other pungent compounds, also possess a marked effect on two-pore domain (KCNK, K2P) K+ channels. Members of this family pla...

متن کامل

Starring TREK-1: the next generation of vascular K+ channels.

“We are more alike than unlike, my dear Captain. I have pores, humans have pores.” Lieutenant Commander Data, Stardate 41209.2 Before 1996, all known mammalian K channels were classified into only two different structural families according to the number of transmembrane (TM) spanning and pore-forming (P) domains in their subunit. One family is characterized by K channels composed of two TM dom...

متن کامل

A Ba2+-resistant, acid-sensitive K+ conductance in Na+-absorbing H441 human airway epithelial cells.

By analysis of whole cell membrane currents in Na(+)-absorbing H441 human airway epithelial cells, we have identified a K(+) conductance (G(K)) resistant to Ba(2+) but sensitive to bupivacaine or extracellular acidification. In polarized H441 monolayers, we have demonstrated that bupivacaine, lidocaine, and quinidine inhibit basolateral membrane K(+) current (I(Bl)) whereas Ba(2+) has only a we...

متن کامل

Dysfunction of KCNK potassium channels impairs neuronal migration in the developing mouse cerebral cortex.

Development of the cerebral cortex depends partly on neural activity, but the identity of the ion channels that might contribute to the activity-dependent cortical development is unknown. KCNK channels are critical determinants of neuronal excitability in the mature cerebral cortex, and a member of the KCNK family, KCNK9, is responsible for a maternally transmitted mental retardation syndrome. ...

متن کامل

Cns distribution of members of the two-pore-domain (KCNK) potassium channel family.

Two-pore-domain potassium (K(+)) channels are substrates for resting K(+) currents in neurons. They are major targets for endogenous modulators, as well as for clinically important compounds such as volatile anesthetics. In the current study, we report on the CNS distribution in the rat and mouse of mRNA encoding seven two-pore-domain K(+) channel family members: TASK-1 (KCNK3), TASK-2 (KCNK5),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013