Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling
نویسندگان
چکیده
We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {xj(t− τ)− xi(t)} and {xj(t− τ)− xi(t− τ)}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we can not achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transition with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability. Finally, qualitative analysis is given to illustrate the numerical results. ∗Electronic address: [email protected]
منابع مشابه
Impact of connection delays on noise-induced spatiotemporal patterns in neuronal networks.
In the present work, we investigate the nontrivial roles of independent Gaussian noise and time-delayed coupling on the synchronous dynamics and coherence property of Fitz Hugh-Nagumo neurons on small-world networks by numerical simulations. First, it is shown that an intermediate level of noise in the neuronal networks can optimally induce a temporal coherence state when the delay in the coupl...
متن کاملPartial coupling delay induced multiple spatiotemporal orders in a modular neuronal network
The influence of partial coupling delay on the spatiotemporal spiking dynamics is explored in a modular neuronal network. The modular neuronal network is composed of two subnetworks which present the small-world property and scale-free property, respectively. Numerical results show that spatiotemporal order that the modular network is most coherent in time and nearly synchronized in space can e...
متن کاملSynchronized bursts following instability of synchronous spiking in chaotic neuronal networks
We report on the origin of synchronized bursting dynamics in various networks of neural spiking oscillators, when a certain threshold in coupling strength is exceeded. These ensembles synchronize at relatively low coupling strength and lose synchronization at stronger coupling via spatio-temporal intermittency. The latter transition triggers multiple-timescale dynamics, which results in synchro...
متن کاملSynchronization for Complex Dynamic Networks with State and Coupling Time-Delays
This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...
متن کاملهمگامسازی در مدل کوراموتو روی شبکههای پیچیده با توزیع فرکانس ذاتی دوقلهای
In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011