Orders at Infinity of Modular Forms with Heegner Divisors

نویسندگان

  • CARL ERICKSON
  • ALISON MILLER
چکیده

Borcherds described the exponents a(n) in product expansions f = q Q∞ n=1(1−q ) of meromorphic modular forms with a Heegner divisor. His description does not directly give any information about h, the order of vanishing at infinity of f . We give p-adic formulas for h in terms of generalized traces given by sums over the zeroes and poles of f . Specializing to the case of the Hilbert class polynomial f = Hd(j(z)) yields p-adic formulas for class numbers that generalize past results of Bruinier, Kohnen and Ono. We also give new proofs of known results about the irreducible decomposition of the supersingular polynomial Sp(X).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The arithmetic of the values of modular functions and the divisors of modular forms

Let j(z) = q−1 + 744 + 196884q + · · · denote the usual elliptic modular function on SL2(Z) (q := e throughout). We shall refer to a complex number τ of the form τ = −b+ √ b2−4ac 2a with a, b, c ∈ Z, gcd(a, b, c) = 1 and b −4ac < 0 as a Heegner point, and we denote its discriminant by the integer dτ := b − 4ac. The values of j at such points are known as singular moduli, and they play a substan...

متن کامل

The Gross-kohnen-zagier Theorem in Higher Dimensions

1. Introduction. The Gross-Kohnen-Zagier theorem [GKZ] says roughly that the Heegner divisors of a modular elliptic curve are given by coefficients of a vector-valued modular form of weight 3/2. We give another proof of this (see Theorem 4.5 and Example 5.1), which extends to some more general quotients of hermitian symmetric spaces of dimensions b − and shows that formal power series, whose co...

متن کامل

Heegner Zeros of Theta Functions ( Trans . Ams . 355 ( 2003 ) , No

Heegner divisors play an important role in number theory. However little is known on whether a modular form has Heegner zeros. In this paper, we start to study this question for a family of classical theta functions, and prove a quantitative result, which roughly says that many of these theta functions have a Heegner zero of discriminant −7. This leads to some interesting questions on the arith...

متن کامل

Heegner Divisors, L-functions and Harmonic Weak Maass Forms

Recent works, mostly related to Ramanujan’s mock theta functions, make use of the fact that harmonic weak Maass forms can be combinatorial generating functions. Generalizing works of Waldspurger, Kohnen and Zagier, we prove that such forms also serve as “generating functions” for central values and derivatives of quadratic twists of weight 2 modular L-functions. To obtain these results, we cons...

متن کامل

Higher-Weight Heegner Points

In this paper we formulate a conjecture which partially generalizes the Gross-Kohnen-Zagier theorem to higher weight modular forms. For f ∈ S2k(N) satisfying certain conditions, we construct a map from the Heegner points of level N to a complex torus, C/Lf , defined by f . We define higher weight analogues of Heegner divisors on C/Lf . We conjecture they all lie on a line, and their positions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006