Directed evolution of cellobiose utilization in Escherichia coli K12.

نویسندگان

  • M Kricker
  • B G Hall
چکیده

The cellobiose catabolic system of Escherichia coli K12 is being used to study the role of cryptic genes in evolution of new functions. Escherichia coli does not use beta-glucoside sugars; however, mutations in several loci can activate the cryptic bgl operon and permit growth on the beta-glucoside sugars arbutin and salicin. Such Bgl+ mutants do not use cellobiose, which is the most common beta-glucoside in nature. We have isolated a Cel+ (cellobiose-utilizing) mutant from a Bgl+ mutant of E. coli K12. The Cel+ mutant grows well on cellobiose, arbutin, and salicin. Genes for utilization of these beta-glucosides are located at 37.8 min on the E. coli map. The genes of the bgl operon are not involved in cellobiose utilization. Introduction of a deletion covering bgl does not affect the ability to utilize cellobiose, arbutin, or salicin, indicating that the new Cel+ genes provide all three functions. Spontaneous cellobiose negative mutants also become arbutin and salicin negative. Analysis of beta-glucoside positive revertants of these mutants indicates that there are separate loci for utilization of each of the beta-glucoside sugars. The genes are closely linked and may be activated from a single locus. A fourth gene at an unknown location increases the growth rate on cellobiose. The cel genes constitute a second cryptic system for beta-glucoside utilization in E. coli K12.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization.

Escherichia coli K12 is being used to study the potential for adaptive evolution that is present in the genome of a single organism. Wild-type E. coli K12 do not utilize any of the beta-glucoside sugars arbutin, salicin or cellobiose. It has been shown that mutations at three cryptic loci allow utilization of these sugars. Mutations in the bgl operon allow inducible growth on arbutin and salici...

متن کامل

Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli.

The ECOR collection of natural Escherichia coli isolates was screened to determine the proportion of strains that carried functional, cryptic and nonfunctional genes for utilization of the three beta-glucoside sugars, arbutin, salicin and cellobiose. None of the 71 natural isolates utilized any of the beta-glucosides. Each strain was subjected to selection for utilization of each of the sugars....

متن کامل

Widespread distribution of deletions of the bgl operon in natural isolates of Escherichia coli.

A deletion that includes the bgl (beta-glucoside utilization) operon of Escherichia coli was originally detected in several rarely occurring natural isolates that utilize cellobiose. Here I show that bgl deletions are present in 95% of the Cel+ isolates obtained from diverse sources. They are also present in 29% of the Cel- strains in two different collections of natural isolates of E. coli. At...

متن کامل

Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.

Wild-type Escherichia coli are not able to utilize beta-glucoside sugars because the genes for utilization of these sugars are cryptic. Spontaneous mutations in the cel operon allow its expression and enable the organism to ferment cellobiose, arbutin and salicin. In this report we describe the structure and nucleotide sequence of the cel operon. The cel operon consists of five genes: celA, who...

متن کامل

Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12.

The cryptic asc (previous called "SAC") operon of Escherichia coli K12 has been completely sequenced. It encodes a repressor (ascG); a PTS enzyme IIasc for the transport of arbutin, salicin, and cellobiose (ascF); and a phospho-beta-glucosidase that hydrolyzes the sugars which are phosphorylated during transport (ascB). ascG and ascFB are transcribed from divergent promoters. The cryptic operon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 1984