Dynamic Similarity Kernel for Visual Recognition

نویسندگان

  • Wang Yan
  • Qingshan Liu
  • Hanqing Lu
  • Songde Ma
چکیده

Inspired by studies of cognitive psychology, we proposed a new dynamic similarity kernel for visual recognition. This kernel has great consistency with human visual similarity judgement by incorporating the perceptual distance function. Moreover, this kernel can be seen as an extension of Gaussian kernel, and therefore can deal with nonlinear variations well like the traditional kernels. Experimental results on natural image classification and face recognition show its superior performance compared to other kernels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual object recognition using probabilistic kernel subspace similarity

Probabilistic subspace similarity-based face matching is an efficient face recognition algorithm proposed by Moghaddam et al. It makes one basic assumption: the intra-class face image set spans a linear space. However, there are yet no rational geometric interpretations of the similarity under that assumption. This paper investigates two subjects. First, we present one interpretation of the int...

متن کامل

Maximum Similarity Based Feature Matching and Adaptive Multiple Kernel Learning for Object Recognition

In this thesis, we perform object recognition using (i) maximum similarity based feature matching, and (ii) adaptive multiple kernel learning. Images are likely more similar if they contain objects within the same categories, so how to measure image similarities correctly and efficiently is one of the critical issues for object recognition. We first propose to match features between two images ...

متن کامل

A new extension of kernel feature and its application for visual recognition

In this paper, we first conceive a new perception of the kernel feature. The kernel subspace methods can be regarded as two independent steps: an explicit kernel feature extraction step and a linear subspace analysis step on the extracted kernel features. The kernel feature vector of an image is composed of dot products between the image and all the training images using nonlinear dot product k...

متن کامل

Object Recognition from Large

This paper presents a new similarity measure for object recognition from large libraries of line-patterns. The measure commences from a Bayesian consistency criterion which as been developed for locating correspondence matches between attributed relational graphs using iterative relaxation operations. The aim in this paper is to simplify the consistency measure so that it may used in a non-iter...

متن کامل

Manifold-Kernels Comparison in MKPLS for Visual Speech Recognition

Speech recognition is a challenging problem. Therefore, considering the visual information besides the acoustic stream, is essential for improving the recognition accuracy in real-life un-constraint situations. MKPLS is shown to be successful framework for solving visual speech recognition. However, MKPLS lacks in-deep analysis to leverage its power. This work is intended to study two core buil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006