The number of real roots of a bivariate polynomial on a line

نویسنده

  • Martin Avendaño
چکیده

We prove that a polynomial f ∈ R[x, y] with t non-zero terms, restricted on a real line y = ax+b, either has at most 6t−4 zeroes or vanishes over the whole line. As a consequence, we derive an alternative algorithm to decide whether a linear polynomial y−ax−b ∈ K[x, y] divides a sparse polynomial f ∈ K[x, y] with t terms in [log(H(f)H(a)H(b))[K : Q] log(deg(f))t] bit operations, where K is a real number field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The number of roots of a lacunary bivariate polynomial on a line

We prove that a polynomial f ∈ R[x, y] with t non-zero terms, restricted to a real line y = ax + b, either has at most 6t − 4 zeros or vanishes over the whole line. As a consequence, we derive an alternative algorithm for deciding whether a linear polynomial y − ax − b ∈ K [x, y] divides a lacunary polynomial f ∈ K [x, y], where K is a real number field. The number of bit operations performed b...

متن کامل

On Classifications of Random Polynomials

 Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...

متن کامل

Parallel computation of real solving bivariate polynomial systems by zero-matching method

We present a new algorithm for solving the real roots of a bivariate polynomial system R 1⁄4 ff ðx; yÞ; gðx; yÞg with a finite number of solutions by using a zero-matching method. The method is based on a lower bound for the bivariate polynomial system when the system is non-zero. Moreover, the multiplicities of the roots of R 1⁄4 0 can be obtained by the associated quotient ring technique and ...

متن کامل

Descartes’ Rule for Trinomials in the Plane and Beyond

We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees counted only non-degenerate roots and even then gave much larger bounds, e.g., 248832 via a famous general result of Khovanski. Our bound is sharp, allows real exponents, and extends to certain systems of n-variate fewnomials....

متن کامل

Counting Isolated Roots of Trinomial Systems in the Plane and Beyond

We prove that any pair of bivariate trinomials has at most 5 isolated roots in the positive quadrant. The best previous upper bounds independent of the polynomial degrees counted only non-degenerate roots and even then gave much larger bounds, e.g., 248832 via a famous general result of Khovanski. Our bound is sharp, allows real exponents, and extends to certain systems of n-variate fewnomials,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007