Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins.
نویسندگان
چکیده
The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway.
منابع مشابه
Pap1+ confers microtubule damage resistance to mut2a, an extragenic suppressor of the rad26:4A allele in S. pombe.
The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accum...
متن کاملPurification and characterization of human DNA damage checkpoint Rad complexes.
Checkpoint Rad proteins function early in the DNA damage checkpoint signaling cascade to arrest cell cycle progression in response to DNA damage. This checkpoint ensures the transmission of an intact genetic complement to daughter cells. To learn about the damage sensor function of the human checkpoint Rad proteins, we purified a heteropentameric complex composed of hRad17-RFCp36-RFCp37-RFCp38-...
متن کاملSqualene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase
Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of AT...
متن کاملSerine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast.
Genome integrity is monitored by a checkpoint that delays mitosis in response to DNA damage. This checkpoint is enforced by Chk1, a protein kinase that inhibits the mitotic inducer Cdc25. In fission yeast, Chk1 is regulated by a group of proteins that includes Rad3, a protein kinase related to human ATM and ATR. These kinases phosphorylate serine or threonine followed by glutamine (SQ/TQ). Fiss...
متن کاملReconstitution of a human ATR-mediated checkpoint response to damaged DNA.
The DNA damage checkpoint response delays cell cycle progression upon DNA damage and prevents genomic instability. Genetic analysis has identified sensor, mediator, signal transducer, and effector components of this global signal transduction pathway. Here we describe an in vitro system with purified human checkpoint proteins that recapitulates key elements of the DNA damage checkpoint. We show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 8 شماره
صفحات -
تاریخ انتشار 2006