Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.
نویسندگان
چکیده
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.
منابع مشابه
Employing dual frequency phase sensitive demodulation technique to improve the accuracy of voltage measurement in magnetic induction tomography and designing a labratoary prototype
Magnetic induction tomography (MIT) is a promising modality for noninvasive imaging due to its contactless technology. Being a non-contact safe imaging technique, MIT has been an appropriate method in compare to other electrical tomography. In this imaging method, a primary magnetic field is applied by excitation coils to induce eddy currents in the material to be studied and a secondary magnet...
متن کاملSafety Considerations on MRI Systems for Firefighters and Paramedics
Background and Objectives: The use of Magnetic Resonance Imaging (MRI) systems is on the rise and the number of installed systems is constantly increasing all over the world. This raises the possibility for emergency personnel to get in contact with these systems. However, the clothing and working material of paramedics and firefighters is not designed for the use on magnets. M...
متن کاملCharacterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring.
Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field m...
متن کاملTemporal analysis of Z-Gradient coil eddy currents in tungsten collimator with different resistivities for SPECT/MRI
INTEC, Ghent University/iMinds, Ghent, Belgium Combining Single Photon Emission Computed Tomography (SPECT) with Magnetic Resonance Imaging (MRI) results in an interaction of the time-varying magnetic field gradients with the highly conducting tungsten collimator, which generates a secondary magnetic field causing spatial distortions in reconstructed MR images. Accurate simulations are importan...
متن کاملEddy-Current-Compensated RF Pulse Design for Parallel Excitation
Introduction: High-performance RF coils and shielded Gradient coils [1] for high or ultra high field MRI often require the use of RF shields that are in close proximity to the imaged volume. These shields can sometimes generate Eddy-Currents that are not adequately compensated for using the pre-emphasis algorithm [2] of the scanner. K-space trajectory measurements [3] can be used to compensate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physics
دوره 115 10 شماره
صفحات -
تاریخ انتشار 2014