Remainder Terms in the Fractional Sobolev Inequality

نویسندگان

  • SHIBING CHEN
  • TOBIAS WETH
چکیده

We show that the fractional Sobolev inequality for the embedding H̊ s 2 (R ) →֒ L 2N N−s (R ), s ∈ (0, N) can be sharpened by adding a remainder term proportional to the distance to the set of optimizers. As a corollary, we derive the existence of a remainder term in the weak L N N−s -norm for functions supported in a domain of finite measure. Our results generalize earlier work for the non-fractional case where s is an even integer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Ground State Representations and Sharp Hardy Inequalities

We determine the sharp constant in the Hardy inequality for fractional Sobolev spaces. To do so, we develop a non-linear and non-local version of the ground state representation, which even yields a remainder term. From the sharp Hardy inequality we deduce the sharp constant in a Sobolev embedding which is optimal in the Lorentz scale. In the appendix, we characterize the cases of equality in t...

متن کامل

On a Sobolev Inequality with Remainder Terms

In this note we consider the following Sobolev inequality

متن کامل

Improved Sobolev Embeddings, Profile Decomposition, and Concentration-compactness for Fractional Sobolev Spaces

We obtain an improved Sobolev inequality in Ḣ spaces involving Morrey norms. This refinement yields a direct proof of the existence of optimizers and the compactness up to symmetry of optimizing sequences for the usual Sobolev embedding. More generally, it allows to derive an alternative, more transparent proof of the profile decomposition in Ḣ obtained in [19] using the abstract approach of di...

متن کامل

The Sharp Sobolev Inequality in Quantitative Form

A quantitative version of the sharp Sobolev inequality in W (R), 1 < p < n, is established with a remainder term involving the distance from extremals.

متن کامل

Positive Solutions to a Linearly Perturbed Critical Growth Biharmonic Problem

Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012