Parametric Reduced-Order Models

نویسنده

  • T. Bui-Thanh
چکیده

We address the problem of propagating input uncertainties through a computational fluid dynamics model. Methods such as Monte Carlo simulation can require many thousands (or more) of computational fluid dynamics solves, rendering them prohibitively expensive for practical applications. This expense can be overcome with reduced-order models that preserve the essential flow dynamics. The specific contributions of this paper are as follows: first, to derive a linearized computational fluid dynamics model that permits the effects of geometry variations to be represented with an explicit affine function; second, to propose an adaptive sampling method to derive a reduced basis that is effective over the joint probability density of the geometry input parameters. The method is applied to derive efficient reduced models for probabilistic analysis of a two-dimensional problem governed by the linearized Euler equations. Reduced-order models that achieve 3-orders-of-magnitude reduction in the number of states are shown to accurately reproduce computational fluid dynamics Monte Carlo simulation results at a fraction of the computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric modeling and model order reduction for (electro-)thermal analysis of nanoelectronic structures

In this work, we discuss the parametric modeling for the (electro)-thermal analysis of components of nanoelectronic structures and automatic model order reduction of the consequent parametric models. Given the system matrices at different values of the parameters, we introduce a simple method of extracting system matrices which are independent of the parameters, so that parametric models of a c...

متن کامل

Efficient Construction of Local Parametric Reduced Order Models Using Machine Learning Techniques

Reduced order models are computationally inexpensive approximations that capture the important dynamical characteristics of large, high-fidelity computer models of physical systems. This paper applies machine learning techniques to improve the design of parametric reduced order models. Specifically, machine learning is used to develop feasible regions in the parameter space where the admissible...

متن کامل

0 Computer Science Technical Report CSTR - 22 November 9 , 2015 Azam Moosavi , Razvan Stefanescu , Adrian Sandu “ Efficient Construction of Local Parametric Reduced

Reduced order models are computationally inexpensive approximations that capture the important dynamical characteristics of large, high-fidelity computer models of physical systems. This paper applies machine learning techniques to improve the design of parametric reduced order models. Specifically, machine learning is used to develop feasible regions in the parameter space where the admissible...

متن کامل

Multivariate predictions of local reduced-order-model errors and dimensions

This paper introduces multivariate input-output models to predict the errors and bases dimensions of local parametric Proper Orthogonal Decomposition reduced-order models. We refer to these multivariate mappings as the MP-LROM models. We employ Gaussian Processes and Artificial Neural Networks to construct approximations of these multivariate mappings. Numerical results with a viscous Burgers m...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

Interpolatory model order reduction by tensor Krylov methods

High dimensional models with parametric dependencies can be challenging to simulate. The computational e↵ort usually increases exponentially with the dimension of the parameter space. To keep the calculations feasible, one can use parametric model order reduction techniques. Multivariate Pad methods match higher order moments of the Laplace variable as well as the parameters. Interpolatory redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008