The evolutionary context of root epidermis cell patterning in grasses (Poaceae)

نویسندگان

  • Marek Marzec
  • Michael Melzer
  • Iwona Szarejko
چکیده

In the last century, the mechanism for establishing the root epidermal pattern in grasses was proposed as a differentiating trait that can be used in taxonomic studies and as a useful tool to indicate the relationships between genera. However, knowledge about root hair differentiation in monocots is still scarce. During the last few years, this process has been studied intensively, mainly based on genetics and histological studies. A histological analysis of the root epidermis pattern composed from root hairs (trichoblasts) and non-root hair cells (atrichoblasts), as well as observations of the mechanism of the establishment of this pattern allowed 2 different methods of epidermal cell specialization in monocots to be precisely described. Additionally, a recently published paper describing root hair development in barley shed new light on the evolutionary context of the mechanism of root epidermis cell specialization, which is discussed in the presented work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development.

Stomata are microscopic valves on the plant epidermis that played a critical role in the evolution of land plants. Studies in the model dicot Arabidopsis thaliana have identified key transcription factors and signaling pathways controlling stomatal patterning and differentiation. Three paralogous Arabidopsis basic helix-loop-helix proteins, SPEECHLESS (SPCH), MUTE, and FAMA, mediate sequential ...

متن کامل

How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis.

Because the plant epidermis is readily accessible and consists of few cell types on most organs, the epidermis has become a well-studied model for cell differentiation and cell patterning in plants. Recent advances in our understanding of the development of three epidermal cell types, trichomes, root hairs, and stomata, allow a comparison of the underlying patterning mechanisms. In Arabidopsis,...

متن کامل

Speedy Grass Stomata: Emerging Molecular and Evolutionary Features.

Published by the Molecular Plant Shanghai Editorial Office in association with Cell Press, an imprint of Elsevier Inc., on behalf of CSPB and IPPE, SIBS, CAS. Stomata in most land plants are formed by a pair of guard cells, controlling the water loss and the carbon dioxide uptake. The development, patterning, and density of stomata are fundamental traits for stomatal function, contributing to p...

متن کامل

Root hair development in the grasses: what we already know and what we still need to know.

A priority in many crop improvement programs for a long time has been to enhance the tolerance level of plants to both abiotic and biotic stress. Recognition that the root system is the prime determinant of a plant's ability to extract both water and minerals from the soil implies that its architecture is an important variable underlying a cultivar's adaptation. The density and/or length of the...

متن کامل

SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014