Efficient Strongly Unforgeable ID-Based Signature Without Random Oracles
نویسندگان
چکیده
Abstract.Up to date, a large number of ID-based signature (IBS) schemes based on bilinear pairings have been proposed. Most of these IBS schemes possess existential unforgeability under adaptive chosen-message attacks, among which some offer strong unforgeability. An IBS scheme is said to be strongly unforgeable if it possesses existential unforgeability and an adversary who is given signatures of the IBS scheme on some message m is unable to generate a new signature on m. Strong unforgeable IBS schemes can be used to construct many important ID-based cryptographic schemes. However, the existing strongly unforgeable IBS schemes lack efficiency for the signature size and the computation cost of verification phase. In this paper, we propose an efficient strongly unforgeable IBS scheme without random oracles. Under the computational Diffie–Hellman and collision resistant hash assumptions, we demonstrate that the proposed IBS scheme possesses strong unforgeability against adaptive chosen-message attacks. When compared with previously proposed strongly unforgeable IBS schemes, our scheme has better performance in terms of signature size and computation cost.
منابع مشابه
Strongly Unforgeable ID-Based Signatures without Random Oracles
In this paper, we construct a strongly unforgeable ID-based signature scheme without random oracles. The signature size of our scheme is smaller than that of other schemes based on varieties of the Diffie–Hellman problem or the discrete logarithm problem. The security of the scheme relies on the difficulty to solve three problems related to the Diffie–Hellman problem and a one-way isomorphism.
متن کاملStrongly Unforgeable Signatures Based on Computational Diffie-Hellman
A signature system is said to be strongly unforgeable if the signature is existentially unforgeable and, given signatures on some message m, the adversary cannot produce a new signature on m. Strongly unforgeable signatures are used for constructing chosen-ciphertext secure systems and group signatures. Current efficient constructions in the standard model (i.e. without random oracles) depend o...
متن کاملStrongly Unforgeable Signatures and Hierarchical Identity-Based Signatures from Lattices without Random Oracles
We propose a variant of the “bonsai tree” signature scheme, a lattice-based existentially unforgeable signature scheme in the standard model. Our construction offers the same efficiency as the “bonsai tree” scheme but supports the stronger notion of strong unforgeability. Strong unforgeability demands that the adversary is unable to produce a new message-signature pair (m, s), even if he or she...
متن کاملTwo-Tier Signatures, Strongly Unforgeable Signatures, and Fiat-Shamir Without Random Oracles
We show how the Fiat-Shamir transform can be used to convert three-move identification protocols into two-tier signature schemes (a primitive we define) with a proof of security that makes a standard assumption on the hash function rather than modeling it as a random oracle. The result requires security of the starting protocol against concurrent attacks. We can show that numerous protocols hav...
متن کاملProxy Re-signature Schemes Without Random Oracles
To construct a suitable and secure proxy re-signature scheme is not an easy job, up to now, there exist only three schemes, one is proposed by Blaze et al. [6] at EUROCRYPT 1998, and the others are proposed by Ateniese and Hohenberger [2] at ACM CCS 2005. However, none of these schemes is proved in the standard model (i.e., do not rely on the random oracle heuristic). In this paper, based on Wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Informatica, Lith. Acad. Sci.
دوره 25 شماره
صفحات -
تاریخ انتشار 2014