Soft Cells for Programmable Self-Assembly of Robotic Modules

نویسندگان

  • Jürg Germann
  • Andrea Maesani
  • Ramon Pericet-Camara
  • Dario Floreano
چکیده

Programmable self-assembly of chained robotic systems holds potential for the automatic construction of complex robots from a minimal set of building blocks. However, current robotic platforms are limited to modules of uniform rigidity, which results in a limited range of obtainable morphologies and thus functionalities of the system. To address these challenges, we investigate in this paper the role of softness in a programmed self-assembling chain system. We rely on a model system consisting of “soft cells” as modules that can obtain different mechanical softness presettings. Starting from a linear chain configuration, the system self-folds into a target morphology based on the intercellular interactions. We systematically investigate the influence of mechanical softness of the individual cells on the self-assembly process. Also, we test the hypothesis that a mixed distribution of cells of different softness enhances the diversity of achievable morphologies at a given resolution compared to systems with modules of uniform rigidity. Finally, we illustrate the potential of our system by the programmable self-assembly of complex and curvilinear morphologies that state-ofthe-art systems can only achieve by significantly increasing their number of modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rule Synthesis Algorithm for Programmable Stochastic Self-Assembly of Robotic Modules

Programmable self-assembly of modular robots offers promising means for structure formation at different scales. Rule-based approaches have been previously employed for distributed control of stochastic self-assembly processes. The assembly rate in the process directly depends on the concurrency level induced by the employed ruleset, i.e. the number of concurrent steps necessary to build one in...

متن کامل

Programmable Self-assembly with Chained Soft Cells: An Algorithm to Fold into 2-D Shapes

Programmable self-assembly of chained modules holds potential for the automatic shape formation of morphologically adapted robots. However, current systems are limited to modules of uniform rigidity, which restricts the range of obtainable morphologies and thus the functionalities of the system. To address these challenges, we previously introduced “soft cells” as modules that can obtain differ...

متن کامل

Self-Disassembling Robots Pebbles: New Results and Ideas for Self-Assembly of 3D Structures

We present our newest algorithms, results, and future plans for the robotic pebble system show in Figure 1 which is capable of forming shapes through uniform selfassembly followed by selective self-disassembly. In general, programmable matter systems are composed of small, intelligent modules able to form a variety of macroscale objects in response to external commands or stimuli. Our system is...

متن کامل

Synthesizing Rulesets for Programmable Robotic Self-assembly: A Case Study Using Floating Miniaturized Robots

Programmable stochastic self-assembly of modular robots provides promising means to formation of structures at different scales. Formalisms based on graph grammars and rule-based approaches have been previously published for controlling the self-assembly process. While several rule-synthesis algorithms have been proposed, formal synthesis of rulesets has only been shown for self-assembly of abs...

متن کامل

Error Recovery by the Use of Sensory Feedback and Reference Measurements for Robotic Assembly

Industrial robots need instrument or parts transport to do which requires coordinate to show the robot’s instrument, parts and body. When investigating the robot location, we are usually interested in measuring its location relative to a reference coordinate system. In this system it is attempted to make the assemble direction smaller by designing the sensor board and making use of an instrumen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014