Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Authors

  • Aghighi , Farzaneh Kharazmi University
  • Ebadati, Omid Mahdi Kharazmi University
Abstract:

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, such as airborne Light Detection and Ranging (LiDAR) system, lead to a huge amount of remotely sensed data which can be employed to produce 2D/3D models. Although much of the previous researches have investigated on the performance improvement of the traditional data analyzing techniques, recently, more recent attention has focused on using probabilistic graphical models. However, less attention has paid to Conditional Random Field (CRF) method for the classification of the LiDAR point cloud dataset. Moreover, most researchers investigating CRF have utilized cameras or LiDAR point cloud; therefore, this paper adopted CRF model to employ both data sources. The methods were evaluated using ISPRS benchmark datasets for Vaihingen dataset on urban classification and 3D building reconstruction. The evaluation of this research shows that the performance of CRF model with an overall accuracy of 89.06% and kappa value of 0.84 is higher than other techniques to classify the employed LiDAR point cloud dataset.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

Conditional Random Fields for Lidar Point Cloud Classification in Complex Urban Areas

In this paper, we investigate the potential of a Conditional Random Field (CRF) approach for the classification of an airborne LiDAR (Light Detection And Ranging) point cloud. This method enables the incorporation of contextual information and learning of specific relations of object classes within a training step. Thus, it is a powerful approach for obtaining reliable results even in complex u...

full text

Airborne Lidar Feature Selection for Urban Classification Using Random Forests

Various multi-echo and Full-waveform (FW) lidar features can be processed. In this paper, multiple classifers are applied to lidar feature selection for urban scene classification. Random forests are used since they provide an accurate classification and run efficiently on large datasets. Moreover, they return measures of variable importance for each class. The feature selection is obtained by ...

full text

Conditional Random Fields for Urban Scene Classification with Full Waveform LiDAR Data

We propose a context-based classification method for point clouds acquired by full waveform airborne laser scanners. As these devices provide a higher point density and additional information like echo width or type of return, an accurate distinction of several object classes is possible. However, especially in dense urban areas correct labelling is a challenging task. Therefore, we incorporate...

full text

Urban Landscape Classification System Using Airborne LiDAR

The classification of urban landscape in aerial LiDAR point clouds can potentially improve the quality of largescale 3D urban models, as well as increase the breadth of objects that can be detected and recognized in urban environments. In this paper, we introduce a multi-category classification system for aerial LiDAR point clouds. We propose the use of a cascade of binary classifiers for label...

full text

Hierarchical Registration Method for Airborne and Vehicle LiDAR Point Cloud

A new hierarchical method for the automatic registration of airborne and vehicle light detection and ranging (LiDAR) data is proposed, using three-dimensional (3D) road networks and 3D building contours. Firstly, 3D road networks are extracted from airborne LiDAR data and then registered with vehicle trajectory lines. During the registration of airborne road networks and vehicle trajectory line...

full text

Hidden conditional random fields for phone classification

In this paper, we show the novel application of hidden conditional random fields (HCRFs) – conditional random fields with hidden state sequences – for modeling speech. Hidden state sequences are critical for modeling the non-stationarity of speech signals. We show that HCRFs can easily be trained using the simple direct optimization technique of stochastic gradient descent. We present the resul...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 4

pages  139- 156

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023