Fault detection, classification and location methodology for solar microgrids using current injection, online phaselet transform, mathematical morphology filter and signal energy analysis

Authors

Abstract:

In this paper, a new method for detection and fault location and classification in MTDC solar microgrid is presented. Some issues such as expanding renewable energy sources and DC loads and efforts to increase power quality and reduce the environmental impact of electricity generation have led to the expansion of solar networks. Identifying the types and locations of faults is important to ensure service continues and to prevent further breakdowns and the increasing the protection’s selectivity characteristic. In this method, an orbital kit is connected to the network. In the fault occurrence time in the network, the fault is detected by passing a current through the connected kits and measuring the traveling waves derived from the fault current, and applying it to a mathematical morphological filter The location of the error is determined using orbital equations and flow calculations. Mathematical morphology filter output and signal energy analysis were used to determine the type of faults. The method presented in an MTDC microgrid connected to energy storage and renewable sources was tested with many faults. The results indicate the accuracy of the proposed method. This method is resistant to changes in arcs resistance (up to 100 ohms), and has a very good performance in high impedance faults conditions(up to 1000 ohms).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A New Fast and Accurate Fault Location and Classification Method on MTDC Microgrids Using Current Injection Technique, Traveling-Waves, Online Wavelet, and Mathematical Morphology

In this paper, a new fast and accurate method for fault detection, location, and classification on multi-terminal DC (MTDC) distribution networks connected to renewable energy and energy storages presented. MTDC networks develop due to some issues such as DC resources and loads expanding, and try to the power quality increasing. It is important to recognize the fault type and location in order ...

full text

An Intelligent Protection Method for Multi-terminal DC Microgrids Using On-line Phaselet, Mathematical Morphology, and Fuzzy Inference Systems

In this paper, a new method for fault detection, location, and classification in multi-terminal DC microgrid (MTDC) is proposed. MTDC grids have expanded due to some issues such as the expansion of DC resources, loads, and aims to increase power quality. Diagnosing the types and location of faults is important to continue the service and prevent further outages. In this method, a circuit kit is...

full text

Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier

Microgrids have played an important role in distribution networks during recent years.  DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...

full text

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Fault Detection and Location by Static Switches in Microgrids Using Wavelet Transform and Adaptive Network-Based Fuzzy Inference System

Microgrids are a highly efficient means of embedding distributed generation sources in a power system. However, if a fault occurs inside or outside the microgrid, the microgrid should be immediately disconnected from the main grid using a static switch installed at the secondary side of the main transformer near the point of common coupling (PCC). The static switch should have a reliable module...

full text

preparation and characterization of new co-fe and fe-mn nano catalysts using resol phenolic resin and response surface methodology study for fischer-tropsch synthesis

کاتالیزورهای co-fe-resol/sio2و fe-mn-resol/sio2 با استفاده از روش ساده و ارزان قیمت همرسوبی تهیه شدند. از رزین پلیمری resol در فرآیند تهیه کاتالیزور استفاده شد.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 1

pages  0- 0

publication date 2023-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023