Modeling the Thermodynamic Properties of Solutions Containing Polymer and Electrolyte with New Local Composition Model

Authors

  • Ali Mohammadian-Abriz Department of Engineering Chemistry, East Azarbaijan Science and Research Branch, Islamic Azad University, Tabriz, Iran
Abstract:

A new theory model based on the local composition concept (TNRF-modified NRTL (TNRF-mNRTL) model) was developed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. An equation represented the activity coefficient of solvent was derived from the proposed excess Gibbs energy equation. The short-range contribution of interaction along with the long-range contribution of interaction and configurational entropy of mixing were used to correlate the activity coefficient of ternary polymer + electrolyte + water systems and also binary polymer + water and electrolyte + water systems. The long-range interaction and configurational entropy have been given by the Pitzer-Debye-Hückel equation and the Flory-Huggins relation, respectively. The performance of the proposed model in fitting the solvent activity of ternary polymer + electrolyte + water solutions has been compared with that obtained from the ternary NRTL, ternary Wilson, ternary modified NRTL and ternary modified Wilson models. Results comparison was demonstrated the validity of the proposed model for solvent activity of polymer + electrolyte + water solutions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Modeling the Transport and Volumetric Properties of Solutions Containing Polymer and Electrolyte with New Model

A new theoretical model based on the local composition concept (TNRF-mNRTL model) was proposed to express the short-range contribution of the excess Gibbs energy for the solutions containing polymer and electrolyte. This contribution of interaction along with the long-range contribution of interaction (Pitzer-Debye-Hückel equation), configurational entropy of mixing (Flory-Huggins relation)...

full text

An Evaluation of Four Electrolyte Models for the Prediction of Thermodynamic Properties of Aqueous Electrolyte Solutions

In this work, the performance of four electrolyte models for prediction the osmotic and activity coefficients of different aqueous salt solutions at 298 K, atmospheric pressure and in a wide range of concentrations are evaluated. In two of these models, (electrolyte Non-Random Two-Liquid e-NRTL and Mean Spherical Approximation-Non-Random Two-Liquid MSA-NRTL), association between ions of opposit...

full text

Modeling electrolyte solutions with the extended universal quasichemical (UNIQUAC) model*

The extended universal quasichemical (UNIQUAC) model is a thermodynamic model for solutions containing electrolytes and nonelectrolytes. The model is a Gibbs excess function consisting of a Debye–Hückel term and a standard UNIQUAC term. The model only requires binary ion-specific interaction parameters. A unique choice of standard states makes the model able to reproduce solid–liquid, vapor–liq...

full text

synthesis and characterization of some new cyclometalated organoplatinum(ii) complexes containing phosphite ligand

در این تحقیق روشی جهت سنتز یک سری از کمپلکس های پلاتین (ii) حاوی لیگاند های دهنده ی فسفری شامل فسفیت و فسفین ارائه شده است. واکنش پیش ماده ی پلاتین (ii)،trans/cis- [ptcl2(sme2)2] ، با 2 اکی مولار از لیگاند p(oph)3در حلال بنزن کمپلکس1، cis-[ptcl2(p(oph)3)2] را تولید می نماید. جهت سنتز کمپلکس سایکلو متال فسفیتی، کمپلکس 1 با 1 اکی والان واکنشگر ptcl2 در حلال زایلن در شرایط رفلاکس زیر گاز آرگون م...

Prediction of Hydrate Formation for the Systems Containing Single and Mixed Electrolyte Solutions

In this work the effect of electrolytes on hydrate formation was investigated. To do so, a new model was used in predicting the hydrate formation conditions in presence of both single and mixed electrolyte solutions. The new model is based on the van der Waals - Platteeuw hydrate equation of state. In order to evaluate the values for the activity of water in electrolyte solutions t...

full text

Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 3

pages  505- 518

publication date 2017-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023