Nanoporous anodized aluminum thickness optimization through pulse current mode

Authors

  • Abdollah Afshar Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155–9466, Azadi Ave, Tehran, Iran
  • Iman Mohammadi Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155–9466, Azadi Ave, Tehran, Iran
  • Shahab Ahmadi Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11155-9466, Azadi Ave., Tehran, Iran
Abstract:

The purpose of this study was to optimize the thickness of anodizing Aluminum coatings processed under pulse current mode through the Design of Experiments (DOE) method. Thickness measurement, polarization and electrochemical impedance spectroscopy were employed to take Thickness and corrosion behaviors of the anodized coatings into consideration. Also, Field-emission scanning electron microscopy (FE-SEM) was utilized to characterize the surface morphology of the coatings. It was found that the thickness of anodized coatings strongly depends on various parameters among which, time, temperature and pulse current parameters such as current density limit, frequency and duty cycle were considered in the present study. Analysis of variance (ANOVA) was used for estimating the coating thickness. Experimental results showed the maximum value for coating thickness was 62 µm being attained at the maximum and minimum current density of 6.28 and 1.55 A/dm2, a frequency of 150.5 Hz, time of 51 min, duty cycle of 81.5% and the bath temperature of 13.5 oC. Also, FE-SEM observation of the surface of anodized coatings showed that this optimum condition leads to a lower porosity amount. Polarization measurements showed that this lower porosity amount caused an increase in corrosion resistance of anodized coatings.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Large-area Sub-micron Structured Surfaces Using Micro Injection Moulding Templates of Nanoporous Anodized Aluminum Oxide

This study demonstrates a mass production method using nanoporous Anodized Aluminum Oxide (AAO) templates as mould insert tools that are used to structure large area polymer surfaces by a micro injection moulding process. SEM and water contact angle measurements served to evaluate the effect of nanostructures on surface properties. Human umbilical vein endothelial cells were cultured on nano-st...

full text

The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties.

We demonstrate that a three dimensional (3D) crystalline tungsten trioxide (WO(3)) nanoporous network, directly grown on a transparent conductive oxide (TCO) substrate, is a suitable working electrode material for high performance electrochromic devices. This nanostructure, with achievable thicknesses of up to 2 μm, is prepared at room temperature by the electrochemical anodization of a RF-sput...

full text

A Dipping Duration Study for Optimization of Anodized-Aluminum Pressure-Sensitive Paint

Anodized-aluminum pressure-sensitive paint (AA-PSP) uses the dipping deposition method to apply a luminophore on a porous anodized-aluminum surface. We study the dipping duration, one of the parameters of the dipping deposition related to the characterization of AA-PSP. The dipping duration was varied from 1 to 100,000 s. The properties characterized are the pressure sensitivity, temperature de...

full text

Optimization of Anodized-Aluminum Pressure-Sensitive Paint by Controlling Luminophore Concentration

Anodized-aluminum pressure-sensitive paint (AA-PSP) has been used as a global pressure sensor for unsteady flow measurements. We use a dipping deposition method to apply a luminophore on a porous anodized-aluminum surface, controlling the luminophore concentration of the dipping method to optimize AA-PSP characteristics. The concentration is varied from 0.001 to 10 mM. Characterizations include...

full text

Investigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires

CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 4

pages  11- 24

publication date 2015-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023