On Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory

Authors

  • Amit Kumar Verma Department of Mathematics, Indian Institute of Technology Patna, Patna, 801106, India
  • Biswajit Pandit Department of Mathematics, Indian Institute of Technology Patna, Patna, 801106, India
  • Ravi P. Agarwal Department of Mathematics, Texas A&M, University, Kingsville, 700 University Blvd, Texas, 78363-8202, USA
Abstract:

In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to pick multiple solutions together by any discrete method like finite difference method, finite element method etc. Here, we propose a new technique based on homotopy perturbation method and variational iteration method. We compare numerically the approximate solutions computed by Adomian decomposition method. We study the convergence analysis of both iterative schemes in C^2 ([0,1]). For small values of λ, solutions exist whereas for large values of λ solutions do not exist.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

full text

on the existence of nonnegative solutions for a class of fractional boundary value problems

‎in this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎by applying kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary bvp formulated by truncating the response function‎. ‎then the arzela--ascoli theorem is used to take $c^1$ ...

full text

Existence of multiple solutions for Sturm-Liouville boundary value problems

In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.

full text

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

full text

A novel technique for a class of singular boundary value problems

In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  713- 734

publication date 2020-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023