Optimum Designing of Forging Preform Die for the H-shaped Parts Using Backward Deformation Method and Neural Networks Algorithm

Authors

  • Afshin Naeimi MSc. Student of Department of Mechanical Engineering, Islamic Azad University of Khomeini Shahr.
  • Ali Eftekhari Assistant Professor, School of Engineering, Department of Mechanical Engineering, Islamic Azad University of Khomeini Shahr.
  • Mohsen Loh Mousavi Assistant Professor, School of Engineering, Department of Mechanical Engineering, Islamic Azad University of Khomeini Shahr
Abstract:

In a closed die forging process, it is impossible to form complex shapes in one stage, and thus it becomes necessary to use preform dies. In the present study, Backward Deformation Method and FE simulation via ABAQUS software has been used in order to design preform die of the H-shaped parts. In the Backward Deformation Method, the final shape of the part is considered as a starting point and using a specific method, a plastic returning path is predicted. Afterwards, using FE results obtained by simulation of the forging process, an artificial neural network is designed to predict the material behavior under various conditions and for different kinds of preform to select optimum preform dies.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

optimum designing of forging preform die for the h-shaped parts using backward deformation method and neural networks algorithm

in a closed die forging process, it is impossible to form complex shapes in one stage, and thus it becomes necessary to use preform dies. in the present study, backward deformation method and fe simulation via abaqus software has been used in order to design preform die of the h-shaped parts. in the backward deformation method, the final shape of the part is considered as a starting point and u...

full text

Optimization of Preform in Close Die Forging by Combination Of Neural Network and Genetic Algorithm

In this essay, a combination of neural network and genetic algorithm has been studied for optimization of the preform in close die forging. Finite Volume Method (FVM) is used as a simulation tool for forging processes. The simulation results have used in the neural network and the genetic algorithm has been employed to optimize the forging force. The neural network was used in three stages for ...

full text

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods

Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification syst...

full text

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 3

pages  79- 96

publication date 2014-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023