A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy

نویسندگان

  • Batool Sajad Department of physics, Alzahra University, Tehran, Iran
چکیده مقاله:

Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the less dense medium. In fact, the evanescent wave is used to illuminate the sample. Consequently, the possibility of observing a superficial (instead of bulk) part of fluorophore labeled sample is opened up. In this work, a total internal reflection fluorescence microscope based on the light guide has been designed and assembled by means of the inverted microscope to image a thin layer from the surface of the sample. Operated experimental arrangement has been employed for the total internal reflection fluorescence imaging of cadmium selenide (CdSe) quantum dots.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging Constitutive Exocytosis with Total Internal Reflection Fluorescence Microscopy

Total internal reflection fluorescence microscopy has been applied to image the final stage of constitutive exocytosis, which is the fusion of single post-Golgi carriers with the plasma membrane. The use of a membrane protein tagged with green fluorescent protein allowed the kinetics of fusion to be followed with a time resolution of 30 frames/s. Quantitative analysis allowed carriers undergoin...

متن کامل

Total internal reflection fluorescence (TIRF) microscopy.

Total internal reflection fluorescence (TIRF) microscopy (TIRFM) is an elegant optical technique that provides for the excitation of fluorophores in an extremely thin axial region ("optical section"). The method is based on the principle that when excitation light is totally internally reflected in a transparent solid (e.g., coverglass) at its interface with liquid, an electromagnetic field, ca...

متن کامل

Topic Introduction Total Internal Reflection Fluorescence Microscopy

The goal in fluorescence microscopy is to detect the signal of fluorescently labeled molecules with great sensitivity and minimal background noise. In epifluorescence microscopy, it is difficult to observe weak signals along the optical axis, owing to the overpowering signal from the out-of-focus particles. Confocal microscopy uses a small pinhole to produce thin optical sections ( 500 nm), but...

متن کامل

Constitutive Exocytosis with Total Internal Reflection Fluorescence Microscopy

Total internal reflection fluorescence microscopy has been applied to image the final stage of constitutive exocytosis, which is the fusion of single postGolgi carriers with the plasma membrane. The use of a membrane protein tagged with green fluorescent protein allowed the kinetics of fusion to be followed with a time resolution of 30 frames/s. Quantitative analysis allowed carriers undergoing...

متن کامل

Total-internal-reflection fluorescence microscopy with W-shaped axicon mirrors.

A scheme based on a W-shaped axicon mirror device for total-internal-reflection fluorescence microscopy (TIRFM) is presented. This approach combines the advantages of higher efficiency compared with traditional TIRFM, adjustable illumination area, and simple switching between wide-field and TIRF imaging modes. TIRF images obtained with this approach are free of shadow artifacts and of interfere...

متن کامل

Imaging with total internal reflection fluorescence microscopy for the cell biologist.

Total internal reflection fluorescence (TIRF) microscopy can be used in a wide range of cell biological applications, and is particularly well suited to analysis of the localization and dynamics of molecules and events near the plasma membrane. The TIRF excitation field decreases exponentially with distance from the cover slip on which cells are grown. This means that fluorophores close to the ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 2

صفحات  47- 54

تاریخ انتشار 2017-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023