Arsenic Oxidation Using UV-Activated Persulfate in Aqueous Solutions: Optimization Using Response Surface Methodology Based on Box-Bencken Design

نویسندگان

  • Ali Asghar Ebrahimi Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
  • Hajar Salehi Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
  • Hossein Fallahzadeh Research Center of Prevention and Epidemiology of Non-Communicable Disease, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.vv
  • Mohammad Hasan Ehrampoush Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
  • Mohammad Hossein Salmani Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
چکیده مقاله:

Introduction: The use of arsenic contaminated water can cause a variety of adverse health effects in humans. Therefore, it is essential to seek out a method to remove arsenic more efficiently. This study examined the amount of arsenic oxidation by response surface methodology (RSM) based on Box-Bencken design. Materials and Methods: In this study, oxidizing arsenite to arsenate was performed by activation of persulfate with UV and the optimal conditions determined using the RSM based on Box-Bencken design to evaluate the effects of independent variables on the response (arsenite oxidation efficiency) performance and to predict the best response rate. In this study, the effects of different parameters such as pH (3-11), concentration of persulfate (4-14 mM), and initial concentration of arsenic (0.1-0.9 mg/l) on process efficiency were investigated. The number of tests in this study was 45, and the oxidation rate was measured using the UV visible spectrophotometer (DR 6000) and the molybdate colorimetric method. Results: Increasing the concentration of arsenic increased oxidation. However, with increasing pH, the oxidation rate decreased and the highest oxidation rate at all concentrations was observed at pH 3. The value higher than R2 (0.934) indicated that the oxidation of arsenic (v) could be determined by this model. Conclusion: Arsenite is a highly toxic metal that is difficult to remove by conventional treatment methods, but a pre-treatment phase can convert arsenite into arsenate and facilitate the removal process. In this study, the use of UV-activated persulfate increased the efficiency of arsenic oxidation to 96%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Bisphenol A removal from aqueous solutions using novel UV/persulfate/H2O2/Cu system: optimization and modelling with central composite design and response surface methodology

BACKGROUND Bisphenol A is a high production volume chemical widely used in manufacturing polycarbonate plastics and epoxy resins used in many industries. Due to its adverse effects on human health as an endocrine disruptor and many other effects on the various organs of the human body as well as aquatic organisms, it should be removed from the aquatic environments. This study aimed to mineralis...

متن کامل

Performance evaluation of mullite ceramic membrane for oily wastewater treatment using response surface methodology based on Box-Behnken design

Nowadays, oily wastewater is increasing along with the growth of various industries. So, wastewater treatment is necessary in order to protect the environment. In this study, a mullite ceramic membrane was prepared. Then, oily wastewater treatment with 200 mg L-1 concentration was investigated by the response surface methodology based on Box-Behnken design (BBD) using Design-Expert 7...

متن کامل

Optimization of ammonia removal in an integrated fix-film activated sludge using response surface methodology

In this work, removal of ammonia from synthetic wastewater using integrated fixed-film activated sludge (IFAS) process was optimized using response surface methodology (RSM). The main operating parameters such as ammonia concentration rate (ALR) and hydraulic retention time (HRT) were optimized to acquire the maximum removal efficiency. The linear, 2FI, quadratic, mean, and cubic models were ut...

متن کامل

Optimization and kinetic evaluation of acid blue 193 degradation by UV/peroxydisulfate oxidation using response surface methodology

The optimization of process conditions for the degradation of Acid Blue 193 by UV/peroxydisulfate was investigated using response surface methodology (RSM). The effects of four parameters namely initial K2S2O8 concentration, UV irradiation, temperature, and initial dye concentration on two process responses, color removal and the rate constants of the first-order kinetic equations, were investi...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3

صفحات  557- 66

تاریخ انتشار 2018-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023