Coexisting arsenate and arsenite adsorption from water using porous pellet adsorbent: Optimization by response surface methodology

نویسندگان

  • B. Te School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
  • B. Wichitsathian School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
  • C. Yossapol School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
  • W. Wonglertarak School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
چکیده مقاله:

Mesoporous pellet adsorbent developed from mixing at an appropriate ratio of natural clay, iron oxide, iron powder, and rice bran was used to investigate the optimization process of batch adsorption parameters for treating aqueous solution coexisting with arsenate and arsenite. Central composite design under response surface methodology was applied for optimizing and observing both individual and interactive effects of four main influential adsorption factors such as contact time (24-72 h), initial solution pH (3-11), adsorbent dosage (0-20 g/L) and initial adsorbate concentration (0.25-4.25 mg/L). Analysis of variance suggested that experimental data were better fitted by the quadratic model with the values of regression coefficient and adjusted regression coefficient higher than 95%. The model accuracy was supported by the correlation plot of actual and predicted adsorption efficiency data and the residual plots. The Pareto analysis suggested that initial solution pH, initial adsorbate concentration, and adsorbent dosage had greater cumulative effects on the removal system by contributing the percentage effect of 47.69%, 37.07% and 14.26%, respectively. The optimum values of contact time, initial solution pH, adsorbent dosage and initial adsorbate concentration were 52 h, 7, 10 g/L and 0.5 mg/L, respectively. The adsorption efficiency of coexisting arsenate and arsenite solution onto the new developed adsorbent was over 99% under the optimized experimental condition.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption and Desorption of Sulfur Compounds by Improved Nano Adsorbent: Optimization Using Response Surface Methodology

Today, sulfur removal from fuels has improved by new adsorbents such as zeolites that needs extensive studies. This study investigates the feasibility of sulfur compounds adsorption on improved nano zeolite existing in organic fuels and desorption of them from nano-adsorbent.Some properties of improved nano zeolite were analyzed to receive better sulfur compounds adsorption.<e...

متن کامل

Optimization of Crystal Violet Adsorption by Chemically Modified Potato Starch Using Response Surface Methodology

In this research, a response surface methodology (RSM) was used to investigate the effects of independent parameters (pH, contact time, temperature, adsorbent dosage, and initial concentration of pollutant), their simultaneous interactions, and quadratic effects on crystal violet adsorption onto two starch based materials in the form of batch experiments. The characterizing results indicated th...

متن کامل

Optimization of Crystal Violet Adsorption by Chemically Modified Potato Starch Using Response Surface Methodology

In this research, a response surface methodology (RSM) was used to investigate the effects of independent parameters (pH, contact time, temperature, adsorbent dosage, and initial concentration of pollutant), their simultaneous interactions, and quadratic effects on crystal violet adsorption onto two starch based materials in the form of batch experiments. The characterizing results indicated th...

متن کامل

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Modeling and Optimization of Arsenic (III) Removal from Aqueous Solutions by GFO Using Response Surface Methodology

Arsenic is a highly toxic element for human beings, which is generally found in groundwater. Dissolved Arsenic in water can be seen as As+3 and As+5 states. The adsorption process is one of the available methods to remove Arsenic from aqueous solutions. Thus, this papers aims at removing Arsenic (III) from aqueous solutions through adsorption on iron oxide granules. The relation among four inde...

متن کامل

Fluoride ion adsorption onto palm stone: Optimization through response surface methodology, isotherm, and adsorbent characteristics data

In some part of the world, groundwater source can become unsafe for drinking due to the high concentration of fluoride ions [1]. The low cost and facile-produced adsorbent like palm stone could effectively removed fluoride ions through adsorption process. In this dataset, the influence of fluoride ion concentration, solution pH, adsorbent dosage, and contact time on fluoride ion adsorption by p...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 2

صفحات  141- 152

تاریخ انتشار 2018-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023