﻿ Distinct edge geodetic decomposition in graphs

# Distinct edge geodetic decomposition in graphs

##### نویسندگان
• J. JOHN Goverment College of Engineering, Tirunelveli
##### چکیده

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π is called the distinct edge geodetic decomposition number of G and is denoted by π_dg1 (G), where g_1 (G) is the edge geodetic number of G. Some general properties satisfied by this concept are studied. Connected graphs which are edge geodetic decomposable are characterized. Connected distinct edge geodetic decomposable graphs of order p with π_dg1 (G)= p-2 are characterised.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

## Algorithms to Find Linear Geodetic Numbers and Linear Edge Geodetic Numbers in Graphs

-Given two vertices u and v of a connected graph G=(V, E), the closed interval I[u, v] is that set of all vertices lying in some u-v geodesic in G. A subset of V(G) S={v1,v2,v3,....,vk} is a linear geodetic set or sequential geodetic set if each vertex x of G lies on a vi – vi+1 geodesic where 1 ≤ i < k . A linear geodetic set of minimum cardinality in G is called as linear geodetic number lgn(...

متن کامل

## The edge geodetic number and Cartesian product of graphs

For a nontrivial connected graph G = (V (G), E(G)), a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a speci...

متن کامل

## On the edge geodetic and edge geodetic domination numbers of a graph

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

متن کامل

## Geodetic Sets in Graphs

Geodetic sets in graphs are briefly surveyed. After an overview of earlier results, we concentrate on recent studies of the geodetic number and related invariants in graphs. Geodetic sets in Cartesian products of graphs and in median graphs are considered in more detail. Algorithmic issues and relations with several other concepts, arising from various convex and interval structures in graphs, ...

متن کامل

## Geodetic Domination in Graphs

A subset S of vertices in a graph G is a called a geodetic dominating set if S is both a geodetic set and a (standard) dominating set. In this paper, we study geodetic domination on graphs.

متن کامل

## Geodetic sets in graphs

For two vertices u and v of a graph G, the closed interval I[u, v] consists of u, v, and all vertices lying in some u − v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u, v] for u, v ∈ S. If I[S] = V (G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A set S of vertices in a graph G is uniform if the ...

متن کامل

ذخیره در منابع من

ذخیره شده در منابع من

{@ msg_add @}

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 2

صفحات  185- 196

تاریخ انتشار 2021-12-01

{@ msg @}

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021