Double phase fault location in microgrids with the presence of electric vehicles and Distributed parameters line model

نویسندگان

  • Daisy, Mohammad Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • javadi, shahram Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • meyar naimi, hassan Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده مقاله:

Nowadays, renewable energy is increasingly used in smart grids and microgrids to reduce the use of fossil fuels and improve network efficiency. Like all power system devices, microgrids are subject to transient and steady-state faults, such as short circuits. These faults impair reliability and consumer dissatisfaction. To accurately, automatically, and economically determine the location of a fault, a robust fault location method is needed to stabilize and repair the damaged part of the network. Given the access to the data of all nodes, the fault in these networks can be located based on the data on the two terminals. Accordingly, this paper proposes a method for determining fault distance and faulty section in the island and grid-connected microgrids. The proposed method uses distributed parameters line model and calculates the location of double-phase faults in the microgrid based on voltage and current data on both sides of each section, taking renewable energies and electric vehicles into account. At first, the measurement devices receive and store the current and voltage data at the beginning and end of each section. If a fault occurs, the fault distance is determined by calculating the difference between voltages and currents on both sides of the fault. According to the sampling rate, many voltage and current samples are obtained during the fault. The proposed method calculates a fault distance for each sample. As a result, many fault distances are obtained. These calculations are done for all sections. In the next step, the distances obtained for each section are plotted on the coordinate axis, and a curve is obtained for each section. Among the curves obtained, one curve has a global minimum, which indicates the faulty section. Other curves are ascending or descending. In addition, the global minimum point indicates the calculated distance of the fault from the beginning of the section. This method is not sensitive to electric vehicle models and distributed generation sources and uses only less than half-cycle data to execute the algorithm. The performance of the method is investigated with the simulation of a 9-bus microgrid in MATLAB/SIMULINK. The effects of changes in line parameters (two scenarios), different fault locations, fault resistance (0, 25, and 50 Ω), fault inception angles (36, 90, 180, and 270 degrees), different DGs operation modes (three scenarios), and measurements error (±3%) are studied. The maximum and minimum errors of this method are obtained to be 0.97% and 0.02%, respectively. The results indicate the high accuracy of the proposed method compared to other fault location methods.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of the Line Parameters in Transmission Line Fault Location

In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of t...

متن کامل

Fault Location Using the Distributed Parameter Transmission Line Model

Earlier work at Texas A&M University led to the development of transmission line fault location algorithms that were based on synchronized sampling of the voltage and current data from the two ends of the line. The line models used in the algorithms were based on lumped parameter models for electrically short lines, or lossless distributed parameter models for electrically long lines. In this p...

متن کامل

Security Constrained Unit Commitment in the Simultaneous Presence of Demand Response Sources and Electric Vehicles

Due to the ever-growing load, especially peak load, the increase in the capacity of plants is inevitable for the response to this growth. Peak load causes increases in customer costs and vast investments in generating and transmission parts. Therefore, restructuring in the electrical industry, competition in the electrical market and Demand Response Programs (DRPs) are of special importance in ...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

A Facility Location Problem with Tchebychev Distance in the Presence of a Probabilistic Line Barrier

This paper considers the Tchebychev distance for a facility location problem with a probabilistic line barrier in the plane. In particular, we develop a mixed-integer nonlinear programming (MINLP) model for this problem that minimizes the total Tchebychev distance between a new facility and the existing facilities. A numerical example is solved to show the validity of the developed model. Becau...

متن کامل

Bi-Level Optimization of Microgrids Considering Electric Vehicles under the Worst Conditions of Renewable Resource Output

In this paper, a two-level optimization model of mixed quadratic integer programming (MIQP) is presented in order to optimally operate microgrids under worst-case output conditions of renewable energy sources. This two-level model is divided into two high-level and low-level problems. In the high-level problem, the goal is to reduce energy loss and load shedding in the demand response program, ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره None

صفحات  11- 21

تاریخ انتشار 2023-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023