Exact Elasticity Solutions for Thick-Walled FG Spherical Pressure Vessels with Linearly and Exponentially Varying Properties

نویسندگان

  • Ali Saidi Mechainical Engineering, Shahid Bahounar university of Kerman
  • Emad Jomehzadeh Mechanical Engineering, Kerman Graduate University of Advanced Technology
چکیده مقاله:

In this paper, exact closed-form solutions for displacement and stress components of thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear variation of properties, as an important case of the known power-law function model is used to describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels can have arbitrary inner to outer stiffness ratio without changing the function variation of FGM. After that, a closed-form solution is presented for displacement and stress components based on exponential model for variation of properties in radial direction. The accuracy of the present analyses is verified with known results. Finally, the effects of non-homogeneity and different values of inner to outer stiffness ratios on the displacement and stress distribution are discussed in detail. It can be seen that for FG vessels subjected to internal pressure, the variation of radial stress in radial direction becomes linear as the inner stiffness becomes five times higher than outer one. When the inner stiffness is half of the outer one, the distribution of the circumferential stress becomes uniform. For the case in which the external pressure is applied, as the inner to outer shear modulus becomes lower than 1/5, the value of the maximum radial stress is higher than external pressure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Material Gradient on Stresses of Thick FGM Spherical Pressure Vessels with Exponentially-Varying Properties

Using the Frobenius series method (FSM), an analytical solution is developed to obtain mechanical stresses of thick spherical pressure vessels made of functionally graded materials (FGMs). The cylinder pressure vessel is subjected to uniform internal pressure. The modulus of elasticity is graded along the radial direction according to power functions of the radial direction. It is assumed that ...

متن کامل

Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius

Based on the Frobenius series method, stresses analysis of the functionally graded rotating thick cylindrical pressure vessels (FGRTCPV) are examined. The vessel is considered in both plane stress and plane strain conditions. All of the cylindrical shell properties except the Poisson ratio are considered exponential function along the radial direction. The governing Navier equation for this pro...

متن کامل

Fluidity Onset Analysis in FG Thick-Walled Spherical Tanks under Concurrent Pressure Loading and Heat Gradient

In this paper,fluidity onset analysis in FG thick-walled spherical tanks under concurrent pressure loading and heat gradient has been presented. Designing thick-walled spherical tanks under pressure as tanks holding fluids under heat loads with high heat gradients require new approaches. Under high internal pressure and high temperature, the tank enters the plastic stage in a part of its thickn...

متن کامل

Elasto-plastic solution for thick-walled spherical vessels with an inner FGM layer

Purely elastic, partially and fully plastic stress states in a thick-walled spherical pressure vessel with an inner functionally graded material (FG) coating subjected to internal and external pressures are developed analytically in this paper. The modulus of elasticity and the uniaxial yield limit of the FG coating layer are considered to vary nonlinearly through the thickness. Using Tresca’s ...

متن کامل

Effect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique

A semi-analytical iterative method as one of the newest analytical methods is used for the elastic analysis of thick-walled spherical pressure vessels made of functionally graded materials subjected to internal pressure. This method is accurate, fast and has a reasonable order of convergence. It is assumed that material properties except Poisson’s ratio are graded through the thickness directio...

متن کامل

Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials

Article history: Received 8 April 2007 Received in revised form 19 April 2008 Accepted 22 April 2008 Available online 9 June 2008

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 22  شماره 4

صفحات  405- 416

تاریخ انتشار 2009-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023