Formation Mechanism of Silicon Modified Aluminide Coating on a Ni-Base Superalloy

نویسندگان

چکیده مقاله:

Formation mechanism of silicon modified aluminide coating applied on a nickel base super alloy IN-738 LC by pack cementation process was the subject of investigation in this research. Study of the microstructure and compositions of the coating was carried out, using optical and scanning electron microscopes, EDS and X-ray diffraction (XRD) techniques. The results showed that due to low partial pressure of silicon halide in Pack process, the amount of soluble silicon in the coating can not exceed 1 wt % of the total coating composition, although the Si content of the particles present within the outer coating sub-layer could reach as far as 5 wt%. Thus, the small amount of soluble Si within the coating could not provide the necessary conditions for formation of any intermetallic and it seems that the formation and growth behavior of various sub-layers in Si-modified aluminide coating is similar to that of simple aluminide coating. Three sub-layers were detected in the coating structure after being subjected to diffusion heat treatment. They were an outer Ni-rich NiAl sub-layer a middle Ni-rich NiAl and an inter diffusion sub-layers. The details of formations and growth mechanism of these sub-layers has been discussed in this research.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECTS OF ALUMINIZING PARAMETERS ON THE MICROSTRUCTURE AND THICKNESS OF PT-ALUMINIDE COATING APPLIED ON A NI-BASE SUPERALLOY, GTD-111

In this research, effects of changes in aluminizing conditions on microstructure of Pt - aluminide coating applied oil a Ni - base superalloy GTD -111, has been studied. A thin layer (i.e.68,#mm ) of Pt was electroplated onto the surface of the .samples, and then they were aluminized by pack cementation technique under various conditions of time, temperature, rate of heating and pack powder com...

متن کامل

Nickel Base Superalloy Rene®80 – The Effect of High Temperature Cyclic Oxidation on Platinum-Aluminide Coating Features

Nickel base superalloy alloys are used in the manufacture of gas turbine engine components, which in use are exposed to high temperatures and corrosive environments. The platinum aluminide coatings described here have been developed to protect nickel base superalloy alloys from oxidation. In this study, the effect of cyclic oxidation, platinum layer thickness and aluminizing process on beha...

متن کامل

Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy

A continuum crystal plasticity model is used to simulate the material behavior of a directionally solidified Ni-base superalloy, DS GTD-111, in the longitudinal and transverse orientations. Isothermal uniaxial fatigue tests with hold times and creep tests are conducted at temperatures ranging from room temperature (RT) to 1038°C to characterize the deformation response. The constitutive model i...

متن کامل

EFFECTS OF TEMPERATURE AND AL-CONCENTRATION ON FORMATION MECHANISM OF AN ALUMINIDE COATING APPLIED ON SUPER ALLOY IN738LC THROUGH A SINGLE-STEP HIGH ACTIVITYGAS DIFFUSION PROCESS

Abstract: activity gas diffusion process has been investigated in this research. Effects of coating temperature and aluminumconcentration in powder mixture on formation mechanism were studied using optical and scanning electronmicroscopes, EDS and X-ray diffraction (XRD) techniques. For this purpose two different packs containing 1 and 2wt% aluminum powder, were used for coating the samples at ...

متن کامل

Formation and Evaluation of Oxidation Behavior of Zirconia- Aluminide Coating on Nickel- Based Alloy

Practical applications of thermal barrier coatings with aluminide bond-coats are limited due to oxide scale spallation of the aluminide coating under applied thermal stresses. Considering the positive effects of oxygen-active elements or their oxides on the high temperature oxidation behavior, in this research zirconia was introduced into an aluminide coating. For this purpose, a Watts type bat...

متن کامل

Creep Crack Growth Simulation of Ni-base Superalloy

The purpose of this study is to develop a numerical approach to simulate the creep cracking of a Ni-base superalloy. The approach is based in continuum damage mechanics (CDM) and uses the classic Kachanov-Rabotnov constitutive equations for creep deformation and damage evolution. Creep damage takes the form of defects such as microcracks, cavities, voids, etc. A numerical crack growth algorithm...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 19  شماره 5

صفحات  39- 44

تاریخ انتشار 2008-07

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023