چکیده

The fundamental solution of the system of differential equations in bio-thermoelasticity with dual phase lag (DPL) in case of steady oscillations in terms of elementary function is constructed and basic property is established. The tissue is considered as an isotropic medium and the propagation of plane harmonic waves is studied. The Christoffel equations are obtained and modified with the thermal as well as bio thermoelastic coupling parameters. These equations explain the existence and propagation of three waves in the medium. Two of the waves are attenuating longitudinal waves and one is non-attenuating transverse wave. The thermal property has no effect on the transverse wave. The velocities and attenuating factors of longitudinal waves are computed for a numerical bioheat transfer model with phase lag. The variation with frequency, thermal parameters, blood perfusion parameter and phase lag parameter are presented graphically. Also the reflection of plane wave from a stress free isothermal boundary of isotropic bio-thermoelastic half space in the context of DPL theory of thermoelasticity is studied. The amplitude ratios of various reflected waves are obtained and these amplitude ratios are further used to obtain the energy ratios of various reflected waves. These energy ratios are function of the angle of incidence and bio-thermoelastic properties of the medium. The expressions of energy ratios have been computed numerically for a particular model to show the effect of Poisson ratio, blood perfusion rate and phase lag parameters.

جستجوی کلمه کلیدی

Fundamental solutionDual-phase-lag

Bio-thermoelasticity

Wave propagation

Energy ratios

منابع مشابه