Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems


  • Saeed Nezhadhosein Department of Applied Mathematics, Payame Noor University, Tehran, 193953697, Iran

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎, ‎as Haar matrix equations using Kronecker product‎. ‎Then the error analysis of the proposed method is presented‎. ‎Some numerical examples are given to demonstrate the efficiency of the method‎. ‎The solutions converge as the number of approximate terms increase.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 23 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Optimization for Solving Linear Non-Quadratic Optimal Control Problems

This paper presents a global optimization approach to solving linear non-quadratic optimal control problems. The main work is to construct a differential flow for finding a global minimizer of the Hamiltonian function over a Euclid space. With the Pontryagin principle, the optimal control is characterized by a function of the adjoint variable and is obtained by solving a Hamiltonian differentia...

متن کامل

Optimal control of linear fuzzy time-variant controlled systems

In this paper, we study linear fuzzy time-variant optimal control systems using the generalized differentiability concept and we present the general form of optimal controls and states. Some examples are provided to illustrate our results.

متن کامل

Optimality System POD for Time-Variant, Linear-Quadratic Control Problems

The optimization of processes is an omnipresent task in industry and science. In many cases those processes are characterized by partial di erential equations (PDEs), which describe how the state of a considered system can be regulated by a control. The aim is to nd a control which induces a desired state or a close approximation of it. A task of this type is called an optimal control problem. ...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

Generalized B-spline functions ‎method‎‎ for solving optimal control problems

‎In this paper we introduce a numerical approach that solves optimal control problems (OCPs) ‎using collocation methods‎. ‎This approach is based upon B-spline functions‎. ‎The derivative matrices between any two families of B-spline functions are utilized to‎ ‎reduce the solution of OCPs to the solution of nonlinear optimization problems‎. ‎Numerical experiments confirm our heoretical findings‎.

متن کامل

A Method for Solving Optimal Control Problems Using Genetic Programming

This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.

متن کامل

ذخیره در منابع من

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 23 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 2

صفحات  1- 14

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2022