× خانه ژورنال ها پست ها ثبت نام ورود

In-Plane Analysis of an FGP Plane Weakened by Multiple Moving Cracks

نویسندگان

  • M Mahmoudi Monfared Department of Mechanical Engineering, Hashtgerd Branch, Islamic Azad University, Hashtgerd, Iran
  • R Bagheri Department of Mechanical Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

چکیده

In this paper, the analytical solution of an electric and Volterra edge dislocation in a functionally graded piezoelectric (FGP) medium is obtained by means of complex Fourier transform. The system is subjected to in-plane mechanical and electrical loading. The material properties of the medium vary exponentially with coordinating parallel to the crack. In this study, the rate of the gradual change of the shear moduli and mass density is assumed to be same. At first, the Volterra edge dislocation solutions are employed to derive singular integral equations in the form of Cauchy singularity for an FGP plane containing multiple horizontal moving cracks. Then, these equations are solved numerically to obtain dislocation density functions on moving crack surfaces. Finally, the effects of the crack moving velocity, material properties, electromechanical coupling factor and cracks arrangement on the normalized mode I and mode II stress intensity factors and electric displacement intensity factor are studied.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

The present paper deals with the mixed mode fracture analysis of a weakened orthotropic half-plane with multiple cracks propagation. The orthotropic half-plane contains Volterra type glide and climb edge dislocations. It is assumed that the medium is under in-plane loading conditions. The distributed dislocation technique is used to obtain integral equations for the dynamic problem of multiple ...

Abstract: The solution to problem of an orthotropic long cylinder subjected to torsional loading is first obtained by means of separation valuables. The cylinder is twisted by two lateral shear tractions and the ends of the cylinder surface of the cylinder are stress-free. First, the domain under consideration is weakened by an axisymmetric rotational Somigliana ring dislocation. The dislocatio...

An analytical solution is presented for the thermoelastic problem of a half-plane with several cracks under thermo mechanical loading using distributed dislocation technique. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. The stress field in a half-plane containing thermoelastic dislocation is ob...

The Green's function and the boundary element method for analysing fracture behaviour of cracks in piezoelectric half-plane are presented in this paper. By combining Stroh formalism and the concept of perturbation, a general thermoelectroelastic solution for half-plane solid subjected to point heat source and/or temperature discontinuity has been derived. Using the proposed solution and the pot...

In this paper, the solution of an isotropic hollow cylinder, with an isotropic coating, weakened by multiple radial cracks is studied. The hollow cylinder and its coating are under Saint-Venant torsional loading. The series solution is then derived for displacement and stress fields in the cross section of the cylinder containing a Volterra-type screw dislocation. The dislocation solution is em...

Quasi-static shear crack propagation in a linear elastic fluid-saturated porous solid c;Iuses a change of pore pressure on the crack plane if it is impermeable but not if it is permeable. Assuming that the pore pressure induced on the crack plane reduces the efTcclive compressive stress (total stress minus pore fluid pressure) and. as a result. the frictional resistance. we find that the energy...