Lattice numerical simulations of hydraulic fractures interacting with oblique natural interfaces

نویسندگان

  • Ahmad Ghorbani Department of Mining and Metallurgical Engineering, Yazd University, Iran
  • Elham Bakhshi Department of Mining and Metallurgical Engineering, Yazd University, Iran
  • Vamegh Rasouli Department of Petroleum Engineering, University of North Dakota, USA
چکیده مقاله:

The hydraulic fracturing propagation is strongly influenced by the existence of natural fractures. This is a very important factor in hydraulic fracturing operations in unconventional reservoirs. Various studies have been done to consider the effect of different parameters such as stress anisotropy, toughness, angle of approach and fluid properties on interaction mechanisms including crossing, arresting and opening. Analytical solutions can only be used for simple fracture geometries and are not usually able to provide good predictions due to many simplified assumptions. Laboratory tests are also conducted under certain constraints like sample size and conditions that are different from the real field conditions. Numerical simulations, including continuum and dis-continuum based models have been used extensively to simulate hydraulic fracture propagation and its interaction with natural interfaces. However, calibration of simulated models with real field data is necessary to ensure the accuracy of the results. A calibrated numerical simulation can be used to model complex geometries. In this study, a Lattice numerical simulator, which is the advanced version of Particle flow Code (PFC) based on the granular particle physics, was used for numerical simulation of lab scale hydraulic fracturing. The scaling laws were also used to increase the dimensions of the simulated samples to allow increasing the rate of fluid injection and reducing its viscosity, hence reduce the simulation time. The interaction of hydraulic fractures and orthogonal fractures with angles of approach of 90°, 60° as well as non-orthogonal fracture planes with different filling materials ranging from strong to very weak were studied. The results showed good agreement with lab observations. In general the larger the angle of approach and stronger the filling material, the higher the likelihood of the crossing mode. Also, networks of regular natural fractures with two fracture sets were simulated. The results showed that the combination of different parameters define the preferred fracture propagation (PFP) which is not easy to predict using analytical solutions. In this situation and more complex real field cases, the use of numerical simulations are necessary to predict the propagation of hydraulic fracture and interaction modes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydraulic fracture propagation: analytical solutions versus Lattice simulations

In this work, we used a grain-based numerical model based on the concept of lattice. The modelling was done to simulate the lab experiments carried out on the mortar samples. Also the analytical solutions corresponding to the viscosity-dominated regime were used to estimate the fracture length and width, and the results obtained were compared with the numerical simulations. As the analytical so...

متن کامل

Modeling Ithaca’s natural hydraulic fractures

Joints within the Catskill Delta complex are believed to be natural hydraulic fractures and abundant indirect evidence supports this claim. The indirect evidence is based on many observations of joint surface morphology and joint spacing among other features. The Alleghanian orogeny left a unique imprint on the joint surfaces also, indicating a rotating horizontal compressive stress field. Nume...

متن کامل

Effect of Hydraulic Fracture on the Fractured Reservoir Based on the Connection with Natural Fractures

Hydraulic fracturing in the fractured reservoirs plays a significant impact on the production rate. In this study, the hydrostatic condition is taken into account, the hydraulic fracturing operation was applied in every direction usinga written distinct element code. In each direction the hydraulic fracture is applied with different lengths and in each level the amount of production is predicte...

متن کامل

Hydraulic Fracturing in Formations with Permeable Natural Fractures

The recently developed Unconventional Fracture Model (UFM*) simulates complex hydraulic fracture network propagation in a formation with pre-existing closed natural fractures, and explicitly models hydraulic injection into a fracture network with multiple propagating branches [1]. The model predicts whether a hydraulic fracture front crosses or is arrested by a natural fracture it encounters, w...

متن کامل

effect of hydraulic fracture on the fractured reservoir based on the connection with natural fractures

hydraulic fracturing in the fractured reservoirs plays a significant impact on the production rate. in this study, the hydrostatic condition is taken into account, the hydraulic fracturing operation was applied in every direction usinga written distinct element code. in each direction the hydraulic fracture is applied with different lengths and in each level the amount of production is predicte...

متن کامل

Lattice Boltzmann simulations of anisotropic particles at liquid interfaces

Complex colloidal fluids, such as emulsions stabilized by particles with complex shapes, play an important role in many industrial applications. However, understanding their physics requires a study at sufficiently large length scales while still resolving the microscopic structure of a large number of particles and of the local hydrodynamics. Due to its high degree of locality, the lattice Bol...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 53  شماره 1

صفحات  83- 89

تاریخ انتشار 2019-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023