Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

نویسندگان

  • Li Tong Department of Respiratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
  • Qiang Wang Department of Respiratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
  • Xiaoqian Ding Department of Respiratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
  • Xin Si Department of Radiology, Qingdao West Coast New Area Central Hospital, Qingdao 266555, Shandong, China
  • Yong Sun Department of Respiratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
چکیده

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in lung cancer cell proliferation, metastasis and apoptosis.Materials and Methods: LncFOXO1 expression levels in lung cancer tissues or cells were detected using qRT-PCR. Then, overexpression and knockdown vectors of lncFOXO1 were transfected into A549 cells to investigate the effect of lncFOXO1 on cell proliferation, invasion, migration and apoptosis. These experiments were assessed using MTT, colony formation, transwell, flow cytometry and western blot assays, respectively. In vivo experiment was performed to examine the tumor weight using Xenograft tumor model assay. The important pathway of PI3K/AKT was finally examined using western blot. Results: The decreased expression level of lncFOXO1 was observed in lung cancer tissues and cells (A549, H460, HCC827 and H1299). Knockdown of lncFOXO1 significantly promoted A549 cells viability, colony formation and invasion. However, lncFOXO1 overexpression obviously reversed the results. Moreover, lncFOXO1 overexpression induced A549 cells apoptosis by regulating Bax, cleaved-caspase-3 and Bcl-2. In vivo experiment revealed that lncFOXO1 overexpression inhibited tumor weight. Furthermore, lncFOXO1 knockdown promoted colony formation and mediated Myc and Cyclin D1 expressions by regulating PI3K/AKT signaling pathway.Conclusion: LncFOXO1 inhibited lung cancer cell proliferation, metastasis, and induced apoptosis through down-regulating PI3K/AKT pathway.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiR-96 induced non-small-cell lung cancer progression through competing endogenous RNA network and affecting EGFR signaling pathway

Objective(s): Non-small cell lung cancer (NSCLC) has become a serious global health problem in the 21st century, and tumor proliferation and metastasis are the leading causes of death in patients  with lung cancer. The present study aimed to verify the function of miR-96 and miR-96 in relation to competing with endogenous RNA regulatory network in NSCLC progression inc...

متن کامل

Anti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell

Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of  Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...

متن کامل

Triiodothyronine potentiates angiogenesis-related factor expression through PI3K/AKT signaling pathway in human osteoarthritic osteoblasts

Objective(s): Previous study has indicated that triiodothyronine (T3) facilitated cartilage degeneration in osteoarthritis (OA). This study aimed to investigate the effects of T3 on angiogenesis-related factor expression in human osteoblasts of OA subchondral bone.Materials and Methods: The subchondral bone specimens were obtained from O...

متن کامل

Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway

Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...

متن کامل

Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice

Objective(s): Ulcerative colitis (UC) is a kind of complex immune disease, and a major cause of destruction of intestinal barrier and oxidative stress in this field. In this paper, glutamine (Gln) was believed to offer protection against oxidative stress injury in colitis mice.Materials and Methods: Thirty mice were randomly assigned int...

متن کامل

The long non-coding RNA NONHSAT062994 inhibits colorectal cancer by inactivating Akt signaling

The aberrant expression of long noncoding RNAs (lncRNAs) is implicated in cancer development and progression. However, the clinical significance and mechanism by which NONHSAT062994 regulates colorectal cancer (CRC) is unknown. We here reported that NONHSAT062994 was significantly downregulated in human CRC tissues and cell lines. Moreover, its expression was inversely correlated with tumor siz...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 22  شماره 5

صفحات  491- 498

تاریخ انتشار 2019-05-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021