Mathematical Modeling of Strong Ground Velocity Pulses using Spectral Decomposition and Forward Directivity Effects

نویسندگان

چکیده مقاله:

Introduction The nature of near-field earthquake records is very complicated and uncertain. Due to this complexity, the prediction of the real structural responses has become very difficult. Based on the analysis of the physical characteristics of near-field records, it is possible to use the simplified mathematical models. Near-field ground motions which are often associated with a progressive directional phenomenon due to their particular type of the causative fault, have much more destructive effects on the structures than the other quake tremors. The related research results show that under the influence of a strong near-field ground motion which contains forward directivity effects, the structural responses would be entered to a great nonlinear domain. On the other hand, due to the limited number of available near-field records, it is needed to prepare artificial acclerograms which can simulate the characteristics of the strong ground motions. Thus, it is possible to achieve a vast data base corresponding to wide range of powerful ground motions using mathematical wavelets. As a result, it provides a general overview of these types of artificial quake tremors and prepares an extended knowledge on the performance of structures in confronting these destructive movements. Material and methods The results obtained from the seismological studies on strong near-field records indicate that the most of these tremors contain large amounts of kinetic energy corresponding to the content of low frequency band. Additionally, by ignoring the high-frequency band the coherent velocity pulses can be detected with acceptable accuracy. In order to separate the high and low frequency bands, the empirical mode decomposition (EMD) method is used based on programming in MATLAB software. Various methods have been proposed for simulation of near-field records which most of them is based on using harmonic functions and the spectral assessment of the low frequency band of earthquake records. In this regards, one of the best closed form evaluation has been performed by Mavroeidis and Papageorgiou (2003) which is to be formulated by making parametric changes to the so-called Gabor wavelet and replacing a simpler function instead of the Gaussian curve with a more efficient algebraic statement. Ghodrati Amiri et al. (2012) proposed another efficient formulation matched either of the benefits of Mavroeidis’s and Gabor wavelets. Both of the aforementioned models are based on the preparing of an efficient multi-statement parametric configuration of harmonic wavelets as noted above. In this study, in addition to calibrate the desired closed-formulations on the velocity pulses of the selected strong records, the accuracy of the notified simulation has also been investigated from the spectral and energy point of views. Figure 1 - Fitting of the acceleration, velocity and displacement time histories corresponding to the natural record and idealized pulses Results and discussion The band of high frequencies corresponding to the spectral content of strong near-field records can be ignored appropriately. This is because the major amount of the related kinetic energy is usually transmitted in the form of a low frequency pulse along with a number of high frequency spikes. Generally, these features are displayed over a relatively short time domain. In this study, the analytical attention to this subject was concentrated on the simulation of coherent multiple pulses via EMD method. The purpose of such simulation is to create a wide range of powerful and high-energy artificial motions. Moreover, due to the limited availability of natural near-field earthquake records, the proposed pulses can be used to evaluate the structural seismic performance. Conclusion Generally, strong near-field records contain a few consecutive pulses with different periods and spectral configurations. The essential effects of these pulses must not be ignored in conducting of nonlinear dynamic time history analyses. Obviously, the effects of these type of earthquake records on the seismic response of mid-to-high rise structures (with a large periodic range) will be significant. Furthermore, the probable occurrence of the resonant mode, may cause destructive effects on the seismic response of structural skeletons. The proposed pulses in this study were formulated through the EMD method as well as performing an analytical calibration process related to both bands of high and low frequencies. The spectral evaluations of the fitted mathematical closed-form pulses were accomplished for the selected earthquake records. The obtained results indicate a good analytical convergence and correlation with the physical parameters of the natural ground motions. ./files/site1/files/134/7.pdf

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Seismic Fragility Assessment of Steel SMRF Structures under Various Types of Near Fault Forward Directivity Ground Motions

In this paper, the seismic collapse probability of special steel moment-resisting frame (SSMRF) structures under near fault pulse-like and far fault ordinary ground motions is evaluated through fragility analysis. For this purpose, five sample frames with 3 to 15 stories are designed and imposed to the ground motion excitations with different characteristics. Fragility curves are derived for th...

متن کامل

Investigation of forward directivity effects on design spectra of industrial complexes near Assaluyeh fault

Recorded ground motions in near fault region have completely distinct nature from others that recorded in far field of the fault. Near source outcomes cause much of the seismic energy to appear in a single large and long period pulse at the beginning of the velocity record. Assaluyeh complex is located near the reverse Assaluyeh fault that is a segment of Mountain Front Fault. This complex cont...

متن کامل

Preservation of Velocity Pulses in Response Spectral Matching

Response spectral matching is a process in which a real recorded earthquake ground motion is modified such that its response spectrum matches a desired target spectrum across a range of periods. Spectral matching algorithms aim to minimise artificial adjustments introduced to the seed, such that original non-stationary characteristics, such as velocity pulses commonly observed in ground motions...

متن کامل

Information processing with longitudinal spectral decomposition of ultrafast pulses.

We describe what we believe to be novel methods for waveform synthesis and detection relying on longitudinal spectral decomposition of subpicosecond optical pulses. Optical processing is performed in both all-fiber and mixed fiber-free-space systems. Demonstrated applications include ultrafast optical waveform synthesis, microwave spectrum analysis, and high-speed electrical arbitrary waveform ...

متن کامل

Strong directivity of ocean-generated seismic noise

[1] We measure direction and amplitude of ocean-generated continuous seismic noise in the western United States. Slowness direction of the noise is determined using array beamforming, and particle motion direction from individual three-component stations. We find two surprising results. First, the noise is highly monodirectional at all sites, regardless of coastal distance. A single narrow gene...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 13  شماره None

صفحات  701- 726

تاریخ انتشار 2020-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023