﻿ Nonnegative signed total Roman domination in graphs

# Nonnegative signed total Roman domination in graphs

##### چکیده

‎Let \$G\$ be a finite and simple graph with vertex set \$V(G)\$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph \$G\$ is a function \$f:V(G)rightarrow{-1‎, ‎1‎, ‎2}\$ satisfying the conditions‎‎that (i) \$sum_{xin N(v)}f(x)ge 0\$ for each‎ ‎\$vin V(G)\$‎, ‎where \$N(v)\$ is the open neighborhood of \$v\$‎, ‎and (ii) every vertex \$u\$ for which‎ ‎\$f(u)=-1\$ has a neighbor \$v\$ for which \$f(v)=2\$‎. ‎The weight of an NNSTRDF \$f\$ is \$omega(f)=sum_{vin V (G)}f(v)\$‎. ‎The nonnegative signed total Roman domination number \$gamma^{NN}_{stR}(G)\$‎ ‎of \$G\$ is the minimum weight of an NNSTRDF on \$G\$‎. ‎In this paper we‎‎initiate the study of the nonnegative signed total Roman domination number‎ ‎of graphs‎, ‎and we present different bounds on \$gamma^{NN}_{stR}(G)\$‎. ‎We determine the nonnegative signed total Roman domination‎‎number of some classes of graphs‎. ‎If \$n\$ is the order and \$m\$ the size‎‎of the graph \$G\$‎, ‎then we show that‎ ‎\$gamma^{NN}_{stR}(G)ge frac{3}{4}(sqrt{8n+1}+1)-n\$ and \$gamma^{NN}_{stR}(G)ge (10n-12m)/5\$‎. ‎In addition‎, ‎if \$G\$ is a bipartite graph of order \$n\$‎, ‎then we prove‎‎that \$gamma^{NN}_{stR}(G)ge frac{3}{2}(sqrt{4n+1}-1)-n\$‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

## Signed total Roman k-domination in directed graphs

Let \$D\$ be a finite and simple digraph with vertex set \$V(D)\$‎.‎A signed total Roman \$k\$-dominating function (STR\$k\$DF) on‎‎\$D\$ is a function \$f:V(D)rightarrow{-1‎, ‎1‎, ‎2}\$ satisfying the conditions‎‎that (i) \$sum_{xin N^{-}(v)}f(x)ge k\$ for each‎‎\$vin V(D)\$‎, ‎where \$N^{-}(v)\$ consists of all vertices of \$D\$ from‎‎which arcs go into \$v\$‎, ‎and (ii) every vertex \$u\$ for which‎‎\$f(u)=-1\$ has a...

متن کامل

## Weak signed Roman domination in graphs

A {em weak signed Roman dominating function} (WSRDF) of a graph \$G\$ with vertex set \$V(G)\$ is defined as afunction \$f:V(G)rightarrow{-1,1,2}\$ having the property that \$sum_{xin N[v]}f(x)ge 1\$ for each \$vin V(G)\$, where \$N[v]\$ is theclosed neighborhood of \$v\$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of \$G...

متن کامل

## Weak signed Roman k-domination in graphs

Let \$kge 1\$ be an integer, and let \$G\$ be a finite and simple graph with vertex set \$V(G)\$.A weak signed Roman \$k\$-dominating function (WSRkDF) on a graph \$G\$ is a function\$f:V(G)rightarrow{-1,1,2}\$ satisfying the conditions that \$sum_{xin N[v]}f(x)ge k\$ for eachvertex \$vin V(G)\$, where \$N[v]\$ is the closed neighborhood of \$v\$. The weight of a WSRkDF \$f\$ is\$w(f)=sum_{vin V(G)}f(v)\$. The weak si...

متن کامل

## Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that \$sum_{xin N(v)}f(x)ge k\$ for each vertex v ∈ V (G), where N(v) is the neighborhood of \$v\$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

متن کامل

## Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph \$G\$ is a function \$f:V(G)rightarrow {0,1,2}\$ satisfying the condition that every vertex \$u\$ for which \$f(u)=0\$ is adjacent to at least one vertex \$v\$ for which \$f(v)=2\$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of \$G\$ induced by the set of all vertices of positive weight has n...

متن کامل

## signed total roman k-domination in directed graphs

let \$d\$ be a finite and simple digraph with vertex set \$v(d)\$‎.‎a signed total roman \$k\$-dominating function (str\$k\$df) on‎‎\$d\$ is a function \$f:v(d)rightarrow{-1‎, ‎1‎, ‎2}\$ satisfying the conditions‎‎that (i) \$sum_{xin n^{-}(v)}f(x)ge k\$ for each‎‎\$vin v(d)\$‎, ‎where \$n^{-}(v)\$ consists of all vertices of \$d\$ from‎‎which arcs go into \$v\$‎, ‎and (ii) every vertex \$u\$ for which‎‎\$f(u)=-1\$ has a...

متن کامل

ذخیره در منابع من

ذخیره شده در منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 2

صفحات  139- 155

تاریخ انتشار 2020-12-01

{@ msg @}

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com