Nonnegative signed total Roman domination in graphs

نویسندگان

چکیده

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u)=-1$ has a neighbor $v$ for which $f(v)=2$‎. ‎The weight of an NNSTRDF $f$ is $omega(f)=sum_{vin V (G)}f(v)$‎. ‎The nonnegative signed total Roman domination number $gamma^{NN}_{stR}(G)$‎ ‎of $G$ is the minimum weight of an NNSTRDF on $G$‎. ‎In this paper we‎‎initiate the study of the nonnegative signed total Roman domination number‎ ‎of graphs‎, ‎and we present different bounds on $gamma^{NN}_{stR}(G)$‎. ‎We determine the nonnegative signed total Roman domination‎‎number of some classes of graphs‎. ‎If $n$ is the order and $m$ the size‎‎of the graph $G$‎, ‎then we show that‎ ‎$gamma^{NN}_{stR}(G)ge frac{3}{4}(sqrt{8n+1}+1)-n$ and $gamma^{NN}_{stR}(G)ge (10n-12m)/5$‎. ‎In addition‎, ‎if $G$ is a bipartite graph of order $n$‎, ‎then we prove‎‎that $gamma^{NN}_{stR}(G)ge frac{3}{2}(sqrt{4n+1}-1)-n$‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signed total Roman k-domination in directed graphs

Let $D$ be a finite and simple digraph with vertex set $V(D)$‎.‎A signed total Roman $k$-dominating function (STR$k$DF) on‎‎$D$ is a function $f:V(D)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each‎‎$vin V(D)$‎, ‎where $N^{-}(v)$ consists of all vertices of $D$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

متن کامل

Weak signed Roman domination in graphs

A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...

متن کامل

Weak signed Roman k-domination in graphs

Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...

متن کامل

Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

متن کامل

Total Roman domination subdivision number in graphs

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

متن کامل

signed total roman k-domination in directed graphs

let $d$ be a finite and simple digraph with vertex set $v(d)$‎.‎a signed total roman $k$-dominating function (str$k$df) on‎‎$d$ is a function $f:v(d)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin n^{-}(v)}f(x)ge k$ for each‎‎$vin v(d)$‎, ‎where $n^{-}(v)$ consists of all vertices of $d$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 5  شماره 2

صفحات  139- 155

تاریخ انتشار 2020-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021