Numerical Modeling of a Fredkin gate using photonic-crystal-based nonlinear effects around the 1550 nm telecommunication wavelength

نویسندگان

  • Farmani, Ali Faculty of Electrical Engineering, Lorestan University, Lorestan
چکیده مقاله:

In this paper, a Fredkin gate using photonic-crystal around the 1550 nm telecommunication wavelength is modelled. The proposed structure has a compact footprint compared with previous works of research groups. The proposed structure is based on air holes on silicon substrate. Silicon substrate and air holes have 466 nm and 177 nm radius, respectively. For analyse of the structure Finite-Difference-Time-Domain (FDTD) is applied. To access of nonlinear effects, a glass ring with refractive index of 1.4 and 10-14m2/w is used. To benchmark of the model, response time and contrast ratio is investigated. Numerical results show, in the best case, raise time of 0.21 ps, fall time of 0.02 ps as well as 4.31 contrast ratio can be obtained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550  nm telecommunication wavelength.

We experimentally and numerically study dispersive wave emission, soliton fission, and supercontinuum generation in a silicon wire at telecommunication wavelengths. Through dispersion engineering, we experimentally confirm a previously reported numerical study and show that the emission of resonant radiation from the solitons can lead to the generation of a supercontinuum spanning over 500 nm. ...

متن کامل

Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength.

We report the first (to our knowledge) experimental observation of resonant cavity-enhanced photosensitivity in As(2)S(3) chalcogenide glass film at 1550 nm telecommunication wavelength. The measured photosensitivity threshold is <0.1 GW/cm(2), and a photoinduced refractive index increase as large as 0.016 is observed. The photosensitive process is athermal; further, we confirm the absence of t...

متن کامل

Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications

Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...

متن کامل

Highly Nonlinear Dual Core Photonic Crystal Fiber with Low Confinement Loss at 1.55μm Wavelength

A novel design of Dual-Core Photonic Crystal Fiber (DC-PCF) with silica-air microstructures is proposed in this paper. Nonlinearity and confinement loss of DC-PCF are evaluated by using a Full-Vectorial Finite Element Method (FV-FEM) successfully. By optimizing the geometry of three ring DC-PCFs, a high nonlinearity (52w-1km-1) and low confinement loss (0.001dB/km) can be achieved at 1.55μm wav...

متن کامل

A quantum Fredkin gate.

Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, de...

متن کامل

An Extension to DNA Based Fredkin Gate Circuits: Design of Reversible Sequential Circuits using Fredkin Gates

In recent years, reversible logic has emerged as a promising computing paradigm having its applications in low power computing, quantum computing, nanotechnology, optical computing and DNA computing. The classical set of gates such as AND, OR, and EXOR are not reversible. Recently, it has been shown how to encode information in DNA and use DNA amplification to implement Fredkin gates. Furthermo...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 20  شماره JIAEEE Vol.20 No.1

صفحات  97- 105

تاریخ انتشار 2023-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023