Numerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets ‎Method‎

نویسندگان

  • A. Salimi Shamloo Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, ‎Iran.
  • B. Parsa Moghaddam Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, ‎Iran.
  • N. khorrami Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
چکیده

In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examples show the effectiveness and efficiency of the approach.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials

In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...

متن کامل

A Numerical Solution of Nonlinear Volterra-fredholm Integral Equations

In this paper, a numerical procedure for solving a class of nonlinear VolterraFredholm integral equations is presented. The method is based upon the globally defined sinc basis functions. Properties of the sinc procedure are utilized to reduce the computation of the nonlinear integral equations to some algebraic equations. Illustrative examples are included to demonstrate the validity and appli...

متن کامل

Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions

Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra–Fredholm–Hammerstein integral equations. The properties of rationalized Haar functions are first presented. These properties together with the Newton–Cotes nodes and Newton–Cotes integration method are then utilized to reduce the solution of Volterra–Fredholm–Hammerstein integral equations to the sol...

متن کامل

Numerical Solution of Stochastic Volterra-fredholm Integral Equations Using Haar Wavelets

In this paper, we present a computational method for solving stochastic VolteraFredholm integral equations which is based on the Haar wavelets and their stochastic operational matrix. Convergence and error analysis of the proposed method are worked out. Numerical results are compared with the block pulse functions method for some non-trivial examples. The obtained results reveal efficiency and ...

متن کامل

Numerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method

In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 13  شماره 1

صفحات  15- 28

تاریخ انتشار 2021-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021