O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

نویسندگان

  • Luca Fazio Department of Neurology and Institute of Translational Neurology, University of Münster, Münster, Germany
  • Manuela Cerina Department of Neurology and Institute of Translational Neurology, University of Münster, Münster, Germany
  • Sven G Meuth Institute of Physiology I, University of Münster, Münster, Germany
چکیده مقاله:

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability. In order to understand the contribution of the KCNQ3 channel subunits to the regulation of the firing patterns and the generation of IM in VB neurons, we performed electrophysiological recordings using a mouse line lacking this subunit (KCNQ3 KO). Application of the specific channel activator Retigabine (Ret) induced hyperpolarization of the resting membrane potential, and significantly reduced the number of action potentials elicited in response to a given current step in control animals. In a similar manner, voltage-clamp experiments showed an increased IM following Ret application, while administration of the specific channel inhibitor XE991 reversed this effect. Preliminary recordings performed in KCNQ3 KO mice indicated a smaller IM amplitude in the same experimental conditions. However, increasing the group size and using other specific modulators will help us understanding better the role of KCNQ3 in VB and indentify potential compensatory mechanisms exerted by other subunits. The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability. In order to understand the contribution of the KCNQ3 channel subunits to the regulation of the firing patterns and the generation of IM in VB neurons, we performed electrophysiological recordings using a mouse line lacking this subunit (KCNQ3 KO). Application of the specific channel activator Retigabine (Ret) induced hyperpolarization of the resting membrane potential, and significantly reduced the number of action potentials elicited in response to a given current step in control animals. In a similar manner, voltage-clamp experiments showed an increased IM following Ret application, while administration of the specific channel inhibitor XE991 reversed this effect. Preliminary recordings performed in KCNQ3 KO mice indicated a smaller IM amplitude in the same experimental conditions. However, increasing the group size and using other specific modulators will help us understanding better the role of KCNQ3 in VB and indentify potential compensatory mechanisms exerted by other subunits. The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability. In order to understand the contribution of the KCNQ3 channel subunits to the regulation of the firing patterns and the generation of IM in VB neurons, we performed electrophysiological recordings using a mouse line lacking this subunit (KCNQ3 KO). Application of the specific channel activator Retigabine (Ret) induced hyperpolarization of the resting membrane potential, and significantly reduced the number of action potentials elicited in response to a given current step in control animals. In a similar manner, voltage-clamp experiments showed an increased IM following Ret application, while administration of the specific channel inhibitor XE991 reversed this effect. Preliminary recordings performed in KCNQ3 KO mice indicated a smaller IM amplitude in the same experimental conditions. However, increasing the group size and using other specific modulators will help us understanding better the role of KCNQ3 in VB and indentify potential compensatory mechanisms exerted by other subunits.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.

Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed abundantly in heart but they are also found in multiple other tissues. Differential coassembly with single transmembrane KCNE beta subunits in different cell types gives rise to a variety of biophysical properties, hence endowing distinct physiological roles for KCNQ1-KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result in...

متن کامل

Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels.

Pharmacological augmentation of neuronal KCNQ muscarinic (M) currents by drugs such as retigabine (RTG) represents a first-in-class therapeutic to treat certain hyperexcitatory diseases by dampening neuronal firing. Whereas all five potassium channel subtypes (KCNQ1-KCNQ5) are found in the nervous system, KCNQ2 and KCNQ3 are the primary players that mediate M currents. We investigated the plast...

متن کامل

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

Subunit-specific modulation of KCNQ potassium channels by Src tyrosine kinase.

We studied regulation by c-Src tyrosine kinase (Src) of KCNQ1-5 channels heterologously expressed in Chinese hamster ovary (CHO) cells and of native M current in rat sympathetic neurons. Using whole-cell patch clamp, we found that Src modulates currents from KCNQ3, KCNQ4, and KCNQ5 homomultimers, KCNQ2/3 heteromultimers and native M current, but not currents from KCNQ1 or KCNQ2 homomultimers. S...

متن کامل

Small Molecule Investigation of KCNQ Potassium Channels: A Dissertation

Voltage-gated K channels associate with multiple regulatory proteins to form complexes with diverse gating properties and pharmacological sensitivities. Small molecules which activate or inhibit channel function are valuable tools for dissecting the assembly and function of these macromolecular complexes. My thesis focuses on the discovery and use of small molecules to probe the structure and f...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  3- 3

تاریخ انتشار 2018-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023