﻿ On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

# On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

##### چکیده

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition \$bigcup_{uin N_{G}(v)}f(u)={1,2}\$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎\$omega (f):=sum _{vin V(G)}|f(v)|\$‎. ‎The 2-rainbow‎‎domination number of G‎, ‎denoted by Υr2 (G)‎, ‎is the‎‎minimum weight of a 2-RDF of G‎. ‎A 2-RDF f is called an outer independent 2-rainbow dominating function ‎(or OI2-RDF) of G if‎‎the set of all v ∈ V (G) with f(v) = ∅ is an‎ ‎independent set‎. ‎The outer independent 2-rainbow domination number Υoir2  (G) is‎‎the minimum weight of an OI2-RDF of G‎. ‎In this paper‎, ‎we obtain the‎‎outer independent 2-rainbow domination number of Pm□Pn‎ ‎and‎ Pm□Cn‎. ‎Also we determine the value of Υoir2  (Cm2Cn) when m or n is even‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

## Outer independent Roman domination number of trees

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

متن کامل

## A Note on the Domination Number of the Cartesian Products of Paths and Cycles

Using algebraic approach we implement a constant time algorithm for computing the domination numbers of the Cartesian products of paths and cycles. Closed formulas are given for domination numbers γ(Pn Ck) (for k ≤ 11, n ∈ N) and domination numbers γ(Cn Pk) and γ(Cn Ck) (for k ≤ 7, n ∈ N).

متن کامل

## Bounds on the outer-independent double Italian domination number

An outer-independent double Italian dominating function (OIDIDF)on a graph \$G\$ with vertex set \$V(G)\$ is a function\$f:V(G)longrightarrow {0,1,2,3}\$ such that if \$f(v)in{0,1}\$ for a vertex \$vin V(G)\$ then \$sum_{uin N[v]}f(u)geq3\$,and the set \$ {uin V(G)|f(u)=0}\$ is independent. The weight ofan OIDIDF \$f\$ is the value \$w(f)=sum_{vin V(G)}f(v)\$. Theminimum weight of an OIDIDF on a graph \$G\$ is cal...

متن کامل

## Roman Domination Number of the Cartesian Products of Paths and Cycles

Roman domination is a historically inspired variety of general domination such that every vertex is labeled with labels from {0, 1, 2}. Roman domination number is the smallest of the sums of labels fulfilling condition that every vertex, labeled 0, has a neighbor, labeled 2. Using algebraic approach we give O(C) time algorithm for computing Roman domination number of special classes of polygrap...

متن کامل

## On the Domination Number of Cartesian Products of Two Directed Paths

Let D = (V, A) be a directed graph of order p. A subset S of the vertex set V(D) is a dominating set of D if for each vertex v∈D – S there exists a vertex u∈S such that (u, v) is an arc of D. The domination number of D, γ(D), is the order of a smallest dominating set of D. In this paper we calculate the domination number of the cartesian product of two directed paths Pm and Pn for general m and n.

متن کامل

## Domination Number of Cartesian Products of Graphs

Recall these definitions (from [2]): Definition (p. 116). In a graph G, a set S ⊆ V (G) is a dominating set if every vertex not in S has a neighbor in S. The domination number γ (G) is the minimum size of a dominating set in G. Definition (p. 193). The cartesian product of G and H, written G H, is the graph with vertex set V (G) × V (H) specified by putting (u, v) adjacent to (u′, v′) if and on...

متن کامل

ذخیره در منابع من

ذخیره شده در منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 2

صفحات  315- 324

تاریخ انتشار 2021-12-01

{@ msg @}

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com