Performance of a Dual Chamber Microbial Fuel Cell using Sodium Chloride as Catholyte

نویسندگان

  • . Dharmendra Department of Civil Engineering, National Institute of Technology, Hamirpur-177005, Himachal Pradesh, India
  • K. Singh NIT Department of Civil Engineering, National Institute of Technology, Hamirpur-177005, Himachal Pradesh, India
چکیده مقاله:

Microbial fuel cell represents an emerging technology to attain electrical energy from wastewater. There are several alternative methods available for wastewater treatment; Microbial fuel cell is one of them, which generates green energy from wastewater for making a contribution to renewable sources of energy. This study states the performance of microbial fuel cell with different parameters i.e., catholyte, electrodes, and initial COD concentration. Sodium chloride was used as catholyte and graphite rods were used as both electrodes. The sodium chloride concentrations in the cathode and initial chemical oxygen demand have also been optimized. The optimum sodium chloride of 70 mM in the cathode solution generates the maximum power density of 408.98μW/m2. As the sodium chloride concentration increases in catholyte, the capacity for power production also increases. The voltage output of Microbial fuel cell increases when the initial concentration of chemical oxygen demand increases to a peak value of 1500 mg/l and if the value exceeds this limit, the performance of Microbial fuel cell (in terms of voltage) starts decreasing. The chemical oxygen demand removal efficiency of a microbial fuel cell with simple graphite electrode and graphite electrodes with coated iron were 79% and 90% respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of High Concentrations of Phenol in Dual Chamber Microbial Fuel Cell

Background and purpose: Microbial fuel cell is one of the sustainable development technologies that can be used simultaneously for removal of many pollutants and generate electricity. The aim of this study was to determine the removal rate of high concentrations of phenol in a microbial fuel cell. Materials and methods: A dual chamber microbial fuel cell having Nafion proton exchange membrane ...

متن کامل

Percarbonate as a naturally buffering catholyte for microbial fuel cells.

Sustainable cathode development has been a challenge for the emerging microbial fuel cell (MFC) technology. This study presents a simple catholyte called sodium percarbonate to serve as a new type of electron acceptor for MFCs. Lab scale comparisons showed sodium percarbonate cathode obtained comparable power density (9.6W/m(3)) with traditional air-cathode and potassium ferricyanide, but perca...

متن کامل

Microbial fuel cell performance with a pressurized cathode chamber.

Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution, which creates mass transport limitation and hinders oxygen reduction at the electrocatalyst (platinum, Pt). Here, we increased the air pressure in the cathode chambe...

متن کامل

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 1

صفحات  79- 86

تاریخ انتشار 2020-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023