Perturbation Solutions for the Study of MHD Blood as a Third Grade Nanofluid Transporting Gold Nanoparticles through a Porous Channel

نویسندگان

چکیده مقاله:

In this paper, the flow, thermal and concentration analyses of blood as a third grade with gold as nanoparticles through a porous channel are carried out using regular perturbation method. The analysis are carried out using Vogel’s model of temperature-dependent viscosity. The developed models were used to investigate the effects of the nano particles on the concentration, temperature and velocity of the fluid as it flows through the porous medium of a hollow channel in the presence of magnetic field. Also, the effects of fluid parameters such as Brownian motion, thermophoresis, viscous dissipation, non-Newtonian, porosity, magnetohydrodynamics (MHD), diffusion constant at various values on the fluid were established. The results generated in this work were found to be in good agreement with the results found in litereture.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Nanofluid Flow Analysis in a Semi-Porous Channel by a Combined Series Solution Method

In this paper, Least Square Method (LSM) and Differential Transformation Method (DTM) are used to solve the problem of laminar nanofluid flow in a semi-porous channel in the presence of transverse magnetic field. Due to existence some shortcomings in each method, a novel and efficient method named LS-DTM is introduced which omitted those defects and has an excellent agreement with numerical sol...

متن کامل

Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model

A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...

متن کامل

Entropy generation analysis of MHD forced convective flow through a horizontal porous channel

Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...

متن کامل

mhd nanofluid flow analysis in a semi-porous channel by a combined series solution method

in this paper, least square method (lsm) and differential transformation method (dtm) are used to solve the problem of laminar nanofluid flow in a semi-porous channel in the presence of transverse magnetic field. due to existence some shortcomings in each method, a novel and efficient method named ls-dtm is introduced which omitted those defects and has an excellent agreement with numerical sol...

متن کامل

Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium

In this investigation, a mathematical model for studying oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic field through porous medium has been developed. The equations of motion of blood flow are solved analytically. The analytical expressions for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress have been...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 2

صفحات  103- 113

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023