Resource leveling scheduling by an ant colony-based model

نویسندگان

  • Mohammad Reza Abassi MBA Program, Payame Noor University, Tehran, Iran
  • Mohsen Garmsiri MBA Program, Payame Noor University, Tehran, Iran
چکیده

In project scheduling, many problems can arise when resource fluctuations are beyond acceptable limits. To overcome this, mathematical techniques have been developed for leveling resources. However, these produce a hard and inflexible approach in scheduling projects. The authors propose a simple resource leveling approach that can be used in scheduling projects with multi-mode execution activities. In the mentioned approach, an ant algorithm determines the execution mode of each activity so that resource leveling index and project time become optimum. In the model, some visibility functions (defined in accordance with problem characteristics) are utilized, and the best, which return the best result, is selected for the model.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 23 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved ant colony optimization algorithm for nonlinear resource-leveling problems

The notion of using a meta-heuristic approach to solve nonlinear resource-leveling problems has been intensively studied in recent years. Premature convergence and poor exploitation are the main obstacles for the heuristic algorithms. Analyzing the characteristics of the project topology network, this paper introduces a directional ant colony optimization (DACO) algorithm for solving nonlinear ...

متن کامل

Ant Colony Optimization for Resource-Constrained Projet Scheduling

An ant colony optimization (ACO) approach for the resource-constrained project scheduling problem (RCPSP) is presented. Several new features that are interesting for ACO in general are proposed and evaluated. In particular, the use of a combination of two pheromone evaluation methods by the ants to find new solutions, a change of the influence of the heuristic on the decisions of the ants durin...

متن کامل

Ant Colony Optimization for Resource-Constrained Project Scheduling

An ant colony optimization approach (ACO) for the resource-constrained project scheduling problem (RCPSP) is presented. Combinations of two pheromone evaluation methods are used by the ants to find new solutions. We tested our ACO algorithm on a set of large benchmark problems from the PSPLIB. Compared to several other heuristics for the RCPSP including genetic algorithms, simulated annealing, ...

متن کامل

A Multi-objective Scheduling Model for Solving the Resource-constrained Project Scheduling and Resource Leveling Problems

The project resource leveling problem was proposed to smooth resource usage and reduce resource fluctuation, while the resource-constrained project scheduling problem focuses on minimizing the project duration with limited resources. Solving the two interrelated problems separately is unlikely to result in a globally optimum schedule. The few integrated optimization methods that have been devel...

متن کامل

Resource Leveling in Fuzzy Project Scheduling

In this paper a new method based on fuzzy theory is developed to solve the Project Resource Leveling Problem in fuzzy environment. Resource Leveling Problem attempts to minimize the resource usage fluctuations in project plan. Assuming that the duration of activities and resource requirements are fuzzy, in this method we compute several project characteristics such as earliest times, latest tim...

متن کامل

ذخیره در منابع من

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 23 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 8  شماره 1

صفحات  -

تاریخ انتشار 2012-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2022