﻿ Signed total Roman k-domination in directed graphs

# Signed total Roman k-domination in directed graphs

##### نویسندگان
• Lutz Volkmann Lehrstuhl II fur Mathematik, RWTH Aachen University, 52056 Aachen, Germany
##### چکیده

Let \$D\$ be a finite and simple digraph with vertex set \$V(D)\$‎.‎A signed total Roman \$k\$-dominating function (STR\$k\$DF) on‎‎\$D\$ is a function \$f:V(D)rightarrow{-1‎, ‎1‎, ‎2}\$ satisfying the conditions‎‎that (i) \$sum_{xin N^{-}(v)}f(x)ge k\$ for each‎‎\$vin V(D)\$‎, ‎where \$N^{-}(v)\$ consists of all vertices of \$D\$ from‎‎which arcs go into \$v\$‎, ‎and (ii) every vertex \$u\$ for which‎‎\$f(u)=-1\$ has an inner neighbor \$v\$ for which \$f(v)=2\$‎.‎The weight of an STR\$k\$DF \$f\$ is \$omega(f)=sum_{vin V (D)}f(v)\$‎.‎The signed total Roman \$k\$-domination number \$gamma^{k}_{stR}(D)\$‎‎of \$D\$ is the minimum weight of an STR\$k\$DF on \$D\$‎. ‎In this paper we‎‎initiate the study of the signed total Roman \$k\$-domination number‎‎of digraphs‎, ‎and we present different bounds on \$gamma^{k}_{stR}(D)\$‎.‎In addition‎, ‎we determine the signed total Roman \$k\$-domination‎‎number of some classes of digraphs‎. ‎Some of our results are extensions‎‎of known properties of the signed total Roman \$k\$-domination‎‎number \$gamma^{k}_{stR}(G)\$ of graphs \$G\$‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

## signed total roman k-domination in directed graphs

let \$d\$ be a finite and simple digraph with vertex set \$v(d)\$‎.‎a signed total roman \$k\$-dominating function (str\$k\$df) on‎‎\$d\$ is a function \$f:v(d)rightarrow{-1‎, ‎1‎, ‎2}\$ satisfying the conditions‎‎that (i) \$sum_{xin n^{-}(v)}f(x)ge k\$ for each‎‎\$vin v(d)\$‎, ‎where \$n^{-}(v)\$ consists of all vertices of \$d\$ from‎‎which arcs go into \$v\$‎, ‎and (ii) every vertex \$u\$ for which‎‎\$f(u)=-1\$ has a...

متن کامل

## Weak signed Roman k-domination in graphs

Let \$kge 1\$ be an integer, and let \$G\$ be a finite and simple graph with vertex set \$V(G)\$.A weak signed Roman \$k\$-dominating function (WSRkDF) on a graph \$G\$ is a function\$f:V(G)rightarrow{-1,1,2}\$ satisfying the conditions that \$sum_{xin N[v]}f(x)ge k\$ for eachvertex \$vin V(G)\$, where \$N[v]\$ is the closed neighborhood of \$v\$. The weight of a WSRkDF \$f\$ is\$w(f)=sum_{vin V(G)}f(v)\$. The weak si...

متن کامل

## Nonnegative signed total Roman domination in graphs

‎Let \$G\$ be a finite and simple graph with vertex set \$V(G)\$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph \$G\$ is a function \$f:V(G)rightarrow{-1‎, ‎1‎, ‎2}\$ satisfying the conditions‎‎that (i) \$sum_{xin N(v)}f(x)ge 0\$ for each‎ ‎\$vin V(G)\$‎, ‎where \$N(v)\$ is the open neighborhood of \$v\$‎, ‎and (ii) every vertex \$u\$ for which‎ ‎\$f(u...

متن کامل

## Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that \$sum_{xin N(v)}f(x)ge k\$ for each vertex v ∈ V (G), where N(v) is the neighborhood of \$v\$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

متن کامل

## On the signed Roman edge k-domination in graphs

Let \$kgeq 1\$ be an integer, and \$G=(V,E)\$ be a finite and simplegraph. The closed neighborhood \$N_G[e]\$ of an edge \$e\$ in a graph\$G\$ is the set consisting of \$e\$ and all edges having a commonend-vertex with \$e\$. A signed Roman edge \$k\$-dominating function(SREkDF) on a graph \$G\$ is a function \$f:E rightarrow{-1,1,2}\$ satisfying the conditions that (i) for every edge \$e\$of \$G\$, \$sum _{xin N[e]} f...

متن کامل

ذخیره در منابع من

ذخیره شده در منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 2

صفحات  165- 178

تاریخ انتشار 2016-12-30

{@ msg @}

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com