× خانه ژورنال ها پست ها ثبت نام ورود

Thermoelastic Analysis of a Functionally Graded Simple Blade Using First-Order Shear Deformation Theory

نویسندگان

  • Abbas Loghman Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, I.R. Iran
  • Mohammad Arefi Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, I.R. Iran

چکیده

In this article, the thermo-elastic behavior of a functionally graded simple blade subjected to the mechanical and thermal loadings is presented, applying a semi-analytical method and a variable thickness cantilever beam model. A specific temperature gradient is employed between the root and the edges of the beam. It is assumed that the mechanical and thermal properties are longitudinal direction dependent pursuant to volume percent of reinforcement. The approach is composed of several steps, including adoption of first-order shear deformation theory, applying beam division accompanying the longitudinal direction, imposing global boundary conditions, and deliberating the continuity conditions. As a result, longitudinal and transverse displacements, and consequently longitudinal, shear and effective stresses are acquired. The analysis is performed for three different distributions of reinforcement particles and pure matrix. Minimum effective and shear stresses distribution belong to the blade with 0% reinforcement at root and 40% reinforcement at tip surface. It has  also been discovered that application of reinforcement particles have reasonable effect on the longitudinal and transverse deflections.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...

In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...

The collocation multiquadric radial basis functions are used to analyze static deformations of a simply supported functionally graded plate modeled by a third-order shear deformation theory. The plate material is made of two isotropic constituents with their volume fractions varying only in the thickness direction. The macroscopic response of the plate is taken to be isotropic and the effective...

Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to investigate the effect of porosity in axial symmetry in bending and buckling load sheet for analysis. For this purpose, a circular p...

Thermo elastic analysis of a functionally graded cylinder under mechanical and thermal loads is investigated analytically in the present paper. The first order shear deformation theory (FSDT) is employed for analysis of the problem. FSDT recognizes two components for definition of the deformation. Displacement of the mid-plane and rotation about that are two components of deformation. The modul...

in this paper the nonlinear bending analysis of thick functionally graded plates subjected to mechanical loading is studied. the formulation is derived based on the third-order shear deformation plate theory and von kármán type non-linearity. young’s modulus is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. the principle of virtual wo...