Narges Hosseinmardi

Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran. | Neuroscience Research Center, Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.

[ 1 ] - Effects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole

Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...

[ 2 ] - Effects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole

Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...

[ 3 ] - Minocycline did not prevent the neurotoxic effects of amyloid β on intrinsic electrophysiological properties of hippocampal CA1 pyramidal neurons in a rat model of Alzheimer’s disease

Introduction: Although aging is the most important risk factor for Alzheimer's disease (AD), there is evidence indicating that neuroinflammation may contribute to the development and progression of the disease. Several studies indicated that minocycline may exert neuroprotective effects in rodent models of neurodegenerative diseases. Nevertheless, there are also other studies implying that ...

[ 4 ] - Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

[ 5 ] - Peroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons

Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons  is st...

[ 6 ] - Altered expression of orexin 1 and endocannabinoid 1 receptors of the hippocampus in three pentylenetetrazol, pilocarpine and kainate seizure models

Introduction: Seizure is synchronous and abnormal brain neuronal activity that leads to activation of different receptors capable of enhancing or suppressing seizure activity such as orexin receptor 1 (OXR1) and/or endocannabinoid receptor 1(CBR1). The time of activation for the receptors may influence seizure control. Therefore, this study aimed to investigate the latency for and the change of...