B. Azizollah Ganji

Department of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran

[ 1 ] - A Novel Metamaterial Microelectromechanical Systems Phase Shifter with High Phase Shift and High Bandwidth

In this paper, new topology of phase shifter is proposed that uses advantage of metamaterial and MEMS technology. The phase shifter is switched between two states of RH- and LH-TL having frequency passband unlike other proposed metamaterials which create the maximum phase shift from one unitcell. Analysis and design approach of the phase shifter is presented and the structure is simulated using...

[ 2 ] - The Effect of Material Properties on Sensitivity of the Microelectromechanical Systems Piezoelectric Hydrophone

In this paper, we present mathematical analyses to consider the effect of material properties on the sensitivity of the Microelectromechanical systems (MEMS) piezoelectric hydrophone and improve the sensitivity by choosing the proper material. The selected structure in the present paper is a piezoelectric hydrophone able to work at low frequencies. The piezoelectric hydrophones are widely used ...

[ 3 ] - Radio Frequency-micro Electromechanical System Switch with High Speed and Low Actuated Voltage

This paper presents a novel RF MEMS (Micro Electromechanical System) fixed-fixed switch for very fast switching. Using the obtained equations, the switching time depends on the stiffness and effective mass of the switch beam so that the switching time will be decreased by higher stiffness (spring constant) and lower effective mass. In new design, the suspension bridge is a three-layer beam so t...

[ 4 ] - Design of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane

This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...

[ 5 ] - A MEMS Capacitive Microphone Modelling for Integrated Circuits

In this paper, a model for MEMS capacitive microphone is presented for integrated circuits.  The microphone has a diaphragm thickness of 1 μm, 0.5 × 0.5 mm2 dimension, and an air gap of 1.0 μm. Using the analytical and simulation results, the important features of MEMS capacitive microphone such as pull-in voltage and sensitivity are obtained 3.8v and 6.916 mV/Pa, respectively while there is no...

[ 6 ] - Modelling of Resonance Frequency of MEMS Corrugated Diaphragm for Capacitive Acoustic Sensors (TECHNICAL NOTE)

In this paper, a new model for resonance frequency of clamped circular corrugated diaphragm has been presented. First, an analytical analyzes has been carried out to derive mathematic expressions for mechanical sensitivity of diaphragm with residual stress. Next by using Rayleigh's method we present mathematical model to calculate the resonance frequency of corrugated diaphragm and investigate ...

[ 7 ] - Accurate Model of Capacitance for MEMS Sensors using Corrugated Diaphragm with Residual Stress

In this paper we present a new model for calculating the capacitance of MEMS sensor with corrugated diaphragm. In this work the effect of residual stress is considered on deflection of diaphragm and capacitance of sensor. First, a new analytical analyzes have been carried out to derive mathematic expressions for central deflection of corrugated diaphragm and its relationship with residual stres...

[ 8 ] - The Effect of Corrugations on Mechanical Sensitivity of Diaphragm for MEMS Capacitive Microphone

In this paper the effect of corrugated diaphragm on performance of MEMS microphone is described. The corrugated diaphragm is modeled in order to improve the sensitivity of micromachined silicon acoustic sensor. Analytical analyzes have been carried out to derive mathematic expressions for the mechanical sensitivity and displacement of corrugated diaphragm with residual stress. It is shown that ...

[ 9 ] - Modeling of capacitance and sensitivity of a MEMS pressure sensor

In this paper modeling of capacitance and sensitivity for MEMS capacitive pressure sensor is presented. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes versus pressure. Therefore first the diaphragm displacement, capacitance and sensitivity of sensor with square diaphragm have been modeled and then simulated using finite element method (FEM).  It can b...

[ 10 ] - A New Design of Dual Band Phase Shifter using MEMS Technology

Abstract - This paper presents a new design of microwave microelectromechanical systems (MEMS) phase shifter for dual band wireless local area network (WLAN) applications. A bit is designed which product a constant phase shift of 11.25° by switching between two line that consist of 12 and 6 unitcells in each frequency band. A unitcell is constructed by gold membrane suspended over the coplanar ...

[ 11 ] - Analytical Analysis of Capacitive Pressure Sensor with Clamped Diaphragm (RESEARCH NOTE)

Abstract   In this paper analytical analysis of capacitive pressure sensor with clamped diaphragm is presented. Mechanical and electrical properties of the sensor are theoretically analyzed based on theory of thin plates with small deflection and the results are evaluated by use of finite element analysis. The central deflection and capacitance values under uniform external pressure are calcula...

[ 12 ] - Accurate Determination of the Pull-in Voltage for MEMS Capacitive Microphone with Clamped Square Diaphragm

Accurate determination of the pull-in, or the collapse voltage is critical in the design process. In this paper an analytical method is presented that provides a more accurate determination of the pull-in voltage for MEMS capacitive devices with clamped square diaphragm. The method incorporates both the linearized modle of the electrostatic force and the nonlinear deflection model of a clamped ...

[ 13 ] - Design of Novel High Sensitive MEMS Capacitive Fingerprint Sensor

In this paper a new design of MEMS capacitive fingerprint sensors is presented. The capacitive sensor is made of two parallel plates with air gap. In these sensors, the capacitance changes is very important factor. It is caused by deformation of the upper electrode of sensor. In this study with making slots in upper electrode, using T-shaped protrusion on diaphragm in order to concentrate the f...

[ 14 ] - Fabrication of a Novel MEMS Capacitive Microphone using Lateral Slotted Diaphragm

external amplifier was able to detect the sound waves from microphone on speaker and oscilloscope. The maximum amplitude of output speech signal of amplifier is 45 mV, and the maximum output of MEMS microphone is 1.125 µV.

[ 15 ] - Fabrication and Characterization of a New MEMS Capacitive Microphone using Perforated Diaphragm

In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of this method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and diaphragm to escape and thus reduce acoustical damping in the microphone. Spin-on-glass (SOG) was us...

[ 16 ] - بهینه سازی ساختارمیکروفن خازنی جدید با دیافراگم قورباغه ای جهت افزایش حساسیت و کاهش ولتاژ تغذیه

در این مقاله هندسه و ابعاد یک میکروفن خازنی جدید قورباغه‌ای شکل با استفاده از الگوریتم تجمع ذرات (PSO) برای کاهش ولتاژ تغدیه و افزایش حساسیت بهینه‌سازی شده است. الگوریتم تجمع ذرات روش بهینه سازی تصادفی مبتنی بر جمعیت است که از رفتار اجتماعی پرندگان الهام گرفته‌است که برای حل فضاهای طراحی پیچیده و چندجانبه مورد استفاده قرار می‌گیرد. روش پیشنهادی در این مقاله می‌تواند با بسیاری از طراحی‌های قطعات...